
SIMD Instruction Set Extensions for Keccak
with Applications to SHA-3, Keyak and Ketje

Hemendra K. Rawat, Patrick Schaumont
Bradley Department of Electrical and Computer Engineering

Virginia Tech
Blacksburg, USA

{hrawat, schaum}@vt.edu

ABSTRACT
Recent processor architectures such as Intel Westmere (and later)
and ARMv8 include instruction-level support for the Advanced En-
cryption Standard (AES), for the Secure Hashing Standard (SHA-1,
SHA2) and for carry-less multiplication. These crypto-instruction
sets provide specialized hardware processing at the top of the me-
mory hierarchy, and provide significant performance improvements
over general-purpose software for common cryptographic opera-
tions. We propose a crypto-instruction set for the KECCAK cryptogr-
aphic sponge and for the KECCAK duplex construction. Our design
is integrated on a 128 bit SIMD interface, applicable to the ARM
NEON and Intel AVX (128 bit) architecture. The proposed instruc-
tion set is optimized for flexibility and supports multiple variants
of the KECCAK-f [b] permutation, for b equal to 200, 400, 800, or
1600 bit. We investigate the performance of the design using the
GEM5 micro-architecture simulator. Compared to the latest hand-
optimized results, we demonstrate a performance improvement of
2 times (over NEON programming) to 6 times (over Assembly pro-
gramming). For example, an optimized NEON implementation of
SHA3-512 computes a hash at 48.1 instructions per byte, while our
design uses 21.9 instructions per byte. The NEON optimized ver-
sion of the LAKE KEYAK AEAD uses 13.4 instructions per byte,
while our design uses 7.7 instructions per byte. We provide com-
prehensive performance evaluation for multiple configurations of
the KECCAK-f [b] permutation in multiple applications (Hash, En-
cryption, AEAD). We also analyze the hardware cost of the pro-
posed instructions in gate-equivalent of 90nm standard cells, and
show that the proposed instructions only require 4658 GE, a frac-
tion of the cost of a full ARM Cortex-A9.

CCS Concepts
•Security and privacy→ Hash functions and message authen-
tication codes; Hardware security implementation;

Keywords
Instruction Set Extensions, KECCAK , ARM NEON, SIMD, SHA3,
Authenticated Encryption

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

HASP 2016, June 18 2016, ,
c© 2016 ACM. ISBN 978-1-4503-4769-3/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2948618.2948622

1. INTRODUCTION
In 2012, NIST announced KECCAK as the winner of the SHA-

3 cryptographic hashing standard competition [18]. The crypto-
graphic permutation of KECCAK can be used in a sponge construc-
tion to support hashing, MACing [7], encryption/decryption [4],
and random number generation [5]. KECCAK can also be used in a
duplex construction to support authenticated encryption [6]. Each
of these applications is achieved through only minor variations of
the KECCAK sponge or duplex.

On a standard block cipher, this type of multi-functional behav-
ior can only be achieved through modes of operation (MOO), which
can introduce additional complexity in the form of feedback, data
dependencies, operations, and intermediate storage. The combina-
tion of an AES-128 block cipher (with only 128 bits of state) with
multiple modes of operation can result in a larger and slower design
than a multi-purpose KECCAK-f [1600] permutation (with 1600 bits
of state). Yalla et al. compared multi-function hardware designs
based on AES and KECCAK for Virtex-7 FPGA. They conclude
that an AES-based multi-functional design is not only 21% larger
than a similar KECCAK-based design, but that it is also slower. The
throughput of the AES-based design is three times – for hashing –
to nine times – for authenticated encryption – slower [27].

In our research, we are motivated by the potential of new crypto
-instructions in modern processors. Intel (Westmere, Sandybridge,
Ivybridge and Haswell) and ARMv8 offer dedicated instructions
to compute AES, SHA-1, SHA-256 and carry-less multiplication.
These instructions operate on wide registers: 128 bit multi-media
extensions (XMM) in the case of Intel and 128 bit NEON in the
case of ARM. Their appearance in mainstream processors is mo-
tivated by the increasing proportion of cryptographic processing
in the contemporary processor workload. Crypto-instructions are
used to efficiently support secure connections (IPSec, SSL and TLS),
bulk encryption and new applications such as blockchains. The
crypto-instructions are specialized and used by experts; they are
not meant to be targeted through a high-level language. This sim-
plifies the software infrastructure requirements such as the need for
compiler support, and it promotes the development of specialized
libraries.

There are several strong arguments in favor of designing addi-
tional new instructions to support cryptographic processing. First,
modern high-end processors are no longer monolithic, closed en-
gines. ARM cores are licensed as soft-intellectual property (IP) to
system design houses, which further customize and integrate these
cores into their System-on-Chip (SoC) designs [17]. For example,
Apple’s A7 core [24] and Qualcomm’s Snapdragon [19] contain
customized and tested derivatives of the ARMv8 architecture. In
those platforms, an optimized instruction-set serves as a market-
differentiator. A second motivation for new crypto-instructions is

http://dx.doi.org/10.1145/2948618.2948622

0 f f f

Message Digest

0 f f f

Key MACMessage

0 f f f

Key IV Keystream

0 f f f

Key MACMessage

Keystream

(a)

(b)

(c)

(d)

rate r

capacity c

Figure 1: Constructions with sponge: (a) Hash, (b) Message
Authentication Code, (c) Keystream Generation. Construction
with duplex: (d) Authenticated Encryption

the unique performance advantage that can be achieved compared
to traditional hardware/software designs based on memory mapped
co-processors [2, 22] or dedicated stand-alone engines [13]. In con-
trast to these traditional designs, crypto-instructions execute at the
top of the memory hierarchy. They are free from memory-latency
effects as long as the entire cryptographic state fits into the pro-
cessor registers. Furthermore, modern CPU engines use sophisti-
cated (multi-issue) instruction scheduling engines, which will ben-
efit these new instructions as well.

Common techniques in high-performance software optimization
often require a trade-off between throughput and latency and/or me-
mory footprint. For example, bitslicing, a well known technique for
software throughput optimization [21], only provides high through-
put when large quantities of data can be processed. The throughput
gain of bitslicing comes at the expense of increased latency. In con-
trast, new instructions operate on the fully parallel cryptographic
state, and they offer the potential of high throughput without the
cost of high latency. They are also well suited when the data pay-
load to process is small.

The paper is structured as follows. We will first summarize our
novelty claims and we review related work in design of instruction-
sets for KECCAK. Section 2 reviews the operation of the crypto-
graphic sponge and motivates how this design achieves its flexibil-
ity as a universal crypto-kernel. Section 3 analyzes how to parti-
tion the KECCAK sponge/duplex into instruction-sized operations.
Section 4 describes the proposed instruction set. Sections 5 offer
performance and hardware-cost analysis, while section 6 discusses
about the applicability of the proposed instructions to different plat-
forms. We conclude the paper in Section 7.

1.1 Novelty Claims
• In this paper, we describe a novel mapping of the KECCAK-

f permutation as six new custom instructions, that can be
utilized to compute a KECCAK-based sponge or duplex of
four different sizes (1600, 800, 400 and 200 bits wide).

• We demonstrate the use of these instructions by implement-
ing 5 different KECCAK-based algorithms: the SHA3-512
hash [18], the LAKE KEYAK and RIVER KEYAK authenti-
cated ciphers [10], and the KETJESR and KETJE JR authen-
ticated ciphers [9]. Together, these algorithms cover all rel-
evant primitives KECCAK-f and KECCAK-p[1600, 800,400,
200].

• We present a detailed performance analysis of the resulting
design for native ARM binary code on ARMv7 using the
GEM5 architectural simulator [12]. GEM5 provides a cycle-
accurate simulation mode, but its processor timing models

used are not guaranteed to match with the actual ARMv7.
We therefore report our results in instructions/byte. We also
provide a hardware cost analysis of the proposed instructions
in 90 nm standard cell GE.

• Our design executes the KECCAK-f [1600] permutation in 65
instructions, while the most optimized NEON implementa-
tion available in the KECCAK code package still requires 144
instructions. Our design therefore not only leads to com-
pact code, but will also deliver a significant performance in-
crease on ARMv7 with NEON SIMD. We demonstrate sim-
ilar gains for other configurations as well.

1.2 Related Work
So far, there have been only a few efforts to design instruction

sets for KECCAK; most of the effort has gone into optimized im-
plementations in hardware or in software. Constantin et al. pro-
pose custom-instruction designs for a 16 bit micro-controller [14].
They describe a set of three instructions that offer a 30% cycle
count reduction for SHA3, and a 30% reduction in memory foot-
print (text). Wang et al describe the integration of a 64 bit KEC-
CAK datapath into a 32 bit LEON3 processor for accelerating
SHA3[26]. They report 87% reduction in cycle count and a 10 %
reduction in memory footprint. In comparison to these designs, our
work targets a multi-purpose instruction set for KECCAK applica-
tions based on a 128 bit SIMD unit.

2. CRYPTOGRAPHIC SPONGE AND KEC-
CAK

This section gives a brief overview of cryptographic sponge func-
tions and their modes of operation. We describe the KECCAK-f per-
mutation, which is the fundamental building block for SHA3, and
for two candidates in the CAESAR competition, namely KEYAK and
KETJE.

2.1 Cryptographic Sponge and Duplex Con-
struction with KECCAK

Figure 1 demonstrates hashing, MACing and keystream gener-
ation using the sponge mode, and authenticated encryption (AE)
using the duplex mode. Cryptographic sponge functions are a class
of algorithms that operate on input of variable length and produce
variable length output based on a fixed length permutation. The
sponge functions have three components: a b bit state, a state per-
mutation function f and a padding rule to adjust the input stream
length to a multiple of the sponge bitrate r. The sponge capacity c
is defined by b− r, and defines the security level. A sponge oper-
ates in two phases: Absorbing and Squeezing. The absorbing phase
integrates r bits of padded input at a time, each time permuting the
state. The squeezing phase extracts r bits of output at a time, each
time further permuting the state. An alternate operation of KEC-
CAK, called the duplex construction [6], interleaves absorbing and
squeezing phases.

2.2 KECCAK- f and KECCAK-p Permutations
KECCAK-f [b] is a set of set of seven iterated permutations, con-

sisting of a sequence of nr rounds on a finite state of b bits. The
value of b is defined as 25× 2l where l ranges from 0 to 6. KEC-
CAK-f [b] organizes the b bit state as a 3D matrix of dimension
5× 5×w, where w is defined as 2l . The number of rounds nr is
determined by the width of the permutation, nr = 12+2l. In each
round of KECCAK-f the state undergoes a set of 5 steps (transfor-
mations).

R = θ o ρ o π o χ o ι

2

Sponge Duplex

Hash MAC PRNG AEAD

KECCAK-
p[800,12]

KECCAK-
f[400]

KECCAK-
f[200]

KECCAK-
f[1600]

rl1x
kxorr64
chi1
chi2

rl1x
xorr
chi1
chi3

rl1x
xorr
chi1
chi3

rl1x
xorr
chi1
chi3

Application
Layer

Cryptographic
Construction

API

Custom
Instructions

Primitives

Figure 2: KECCAK application stack

The 5× 5×w state matrix (Figure 3) can be split into slices as
well as lanes. A slice is defined as a 5×5 matrix in the state with
a constant z coordinate. A lane is an array of w bits of state with
constant x and y coordinate. Depending upon the KECCAK-f per-
mutation 1600, 800, 400 or 200, the lane size changes to 64, 32,
16, 8 bits respectively. A slice is always 25 bits irrespective of the
type of KECCAK-f permutation

In brief, the 5 KECCAK steps can be defined as follows:

θ : For each column i, calculate the column parity Ci−1 and Ci+1
of columns (i− 1)mod5 and (i+ 1)mod5 respectively. Left rotate
Ci+1 by one and XOR with Ci−1. XOR the resulting value Di into
each lane of column i. θ step requires support for XOR and ROL
(rotate left) CPU instruction.

ρ : Left rotate all lanes in the state by a fixed offset. For efficient
implementation of ρ step, the CPU should support ROL instruction
for word size equal to lane size.

π : All lanes in the state are transposed in a fixed pattern. This
step can be done using only MOV instruction.

χ : Each bit of the lane is non linearly combined with the bits of
nearby lanes using AND, XOR and NOT operations.

ι : A w bit constant is XORed to a single lane.

The KECCAK-p[b,nr] permutation is a generalized version of
KECCAK-f permutation which takes number of rounds nr as in-
put parameter. They form the basis of KEYAK and KETJE. An
in-depth explanation of the KECCAK permutation can be found in
the KECCAK reference [8].

3. DESIGN EXPLORATION FOR KECCAK
CUSTOM INSTRUCTIONS

Figure 2 illustrates how the KECCAK permutation is utilized as
a universal cryptographic kernel. All the KECCAK modes are im-
plemented using either the Sponge or else the Duplex construc-
tion. These constructions use one of the four relevant KECCAK-
f or KECCAK-p primitives (1600, 800, 400, 200) depending upon
the security goal and throughput requirement. The design approach
for KECCAK applications simplifies the software development pro-
cess by abstracting the implementation details of the lower layers
(primitives) from the generic top application layer (modes). It also
localizes the optimization scope of KECCAK based applications to
the primitives. Our profiling results for hashing (SHA3) show that
99% of CPU cycles were used for KECCAK-f [1600]. For LAKE
KEYAK, 65% of the total CPU cycles were spent in doing KEC-
CAK-p[1600,12]

L00 L10

L01

L20 L30 L40

L11 L21 L31 L41

L02 L12 L22 L32 L42

L03 L13 L23 L33 L43

L04 L14 L24 L34 L44

C0 C1 C2 C3 C4

D0 D1 D2 D3 D4

XOR XOR XOR XOR XOR

ROL
1

ROL
1

ROL
1

ROL
1

ROL
1

XOR XOR XOR XOR XOR

Column
parity

θ-effect

x

y

x=0 x=1 x=2 x=3 x=4

y=4

y=3

y=2

y=1

y=0

x

z sliceplane

lane

State

Figure 3: Data dependencies of θ -effect values

Our work takes advantage of the layered design of KECCAK based
applications. We propose a set of six custom instructions to accel-
erate four KECCAK primitives 1600, 800, 400 and 200 and show
the flexibility of our design by accelerating five different KEC-
CAK applications namely SHA3, LAKE KEYAK, RIVER KEYAK,
KETJE SR and KETJE JR. Our instructions are stateless, which
means that we keep the entire KECCAK state into processor reg-
isters. Therefore, we first explain how to partition a relatively large
KECCAK state (1600 bits) into smaller pieces that can be processed
as instruction operands of 128 bits each. Later we will briefly dis-
cuss some features of the ARMv7 ISA and NEON SIMD that we
used for designing the proposed instructions.

3.1 Cutting the KECCAK State
A 5×5×w bit KECCAK state can be either viewed as w slices of

25 bits each or 5 planes with 5 lanes of w bits each. B. Jungk et al.
propose a slice-oriented KECCAK hardware [20] which is based on
the observation that all KECCAK steps except ρ can be done effi-
ciently with slice-wise processing. They stored the KECCAK state
in 25 8×8 distributed RAMs and rescheduled the KECCAK round
function to perform π , χ , ι and θ steps together. Such an approach
is good for custom hardware where the state can be stored in dis-
tributed RAMs and the hardware can read the state in lane-wise
or slice-wise fashion efficiently depending upon the KECCAK step.
From the point of view of software executing on a processor, slice-
wise design may not be very efficient. First, input messages for

3

D0 D1 D2 D3 D4

B0 B1 B2 B3 B4

XOR XOR XOR XOR XOR

ρ ρ ρ ρ ρ

P0 P1 P2 P3 P4

χ χ χ χ χ

L00 L10 L20 L30 L40

L00 L11 L22 L33 L44

θ &π
step

ρ step

χ
step

Intermediate
value

Intermediate
value

Figure 4: Data dependencies of θ , ρ , π and χ step (one plane)

absorption normally arrive in lane-oriented fashion, making slice-
wise storage expensive in terms of data movement. Second, after
the π o χ o ι o θ steps are done on the slices, the state needs to
be transformed back into lane-wise orientation for ρ step. There-
fore, all optimized software implementations [3] whether SIMD or
64/32 bit use plane wise processing.

The design of custom instructions requires the partitioning of
the dataflow graph of the target algorithm into instruction patterns,
such that the schedule length of the graph becomes as short as pos-
sible [23]. In the case of SIMD-like instructions, we are using in-
struction patterns of 2×128 bit input and a 128 bit output.

KECCAK-f can have have a state size of up to 1600 bits (25×64
bits). For a processor with 32 64 bit registers, just holding a com-
plete KECCAK-f [1600] state in CPU register consumes 25 regis-
ters, leaving just 7 free registers to hold intermediate values during
the round computation. Our custom instructions have been chosen
such that register spills to main memory (LOAD/STORE) during
the KECCAK round are avoided, and such that that register reorder-
ing operations (MOV and VEXT) are minimized.

Figure 3 shows the data dependency graph for calculation of θ -
effect (Di). The column parity for each column is denoted by Ci.
The lane size depends upon the KECCAK-f permutation, but here
we will assume KECCAK-f [1600] with lane size and intermediate
round values of 64 bits. ARM NEON already supports XOR in-
structions on 128 bit registers, so the column parities can be very ef-
ficiently calculated. To support calculation of θ -effect from column
parities, we add an instruction which combines XOR with ROL(1)
(rotate left by 1).

Figure 4 shows the data dependencies of θ , ρ , π and χ step for
one KECCAK plane. ι step is not shown for the sake of brevity.
The lanes are denoted by Lxy and are selected based on π step. Bi
denotes the intermediate values after θ and π step. Pi denotes the

Qi

D(2i)

S(4i)

D(2i+1)

S(4i+1) S(4i+2) S(4i+3)

A
lia
se
d

Quad
word

Double
word

Single
word

Figure 5: Aliased NEON registers in ARMv7

intermediate values after ρ step. In a round, a single processed
KECCAK lane after ι step depends on 3 lanes, 3 θ -effect values,
ρ offsets (not shown) and ι constant. Two 128 bit input registers
of an instruction cannot hold all these values. One solution is to
split the 64 bit lane into two independent 32 bit lanes using the
bit-interleaving technique [3], so that up to eight 32 bit lanes can
be packed in two 128 bit registers. We do not take this approach
because of two reasons. First, breaking a 25 lane (64 bit) state into
a 50 lane (32 bit) state doubles the number of register transpositions
required in π step.

Second, doing the ρ step on multiple lanes of a plane in parallel
requires multiple barrel shifter units in hardware which will be ex-
pensive in terms of gates. So we take an alternative approach and
combine θ and ρ steps with π in a single instruction which requires
one variable shifter unit in hardware. To accelerate the χ step we
propose custom instructions that apply NOT, AND, XOR operation
to nearby lanes packed in two 128 bit registers.

3.2 ARMv7 ISA and NEON SIMD
NEON instructions in ARM execute in a separate pipeline with

its own register file [1]. The ARMv7 NEON unit has 16 quad-word
(128 bit) registers, which are aliased with 32 double-word (64 bit)
registers (Figure 5). In addition, the first 16 double-word registers
are aliased with 32 single-word (32 bit) registers. NEON instruc-
tions have a fixed encoding size of 32 bits and operate on Quad(Q),
Double(D) and Single(S) word registers depending upon the in-
struction definition. NEON instructions use a three-register format
(2 source operands and 1 destination operand) or a format with 3
registers and an immediate value (VEXT instruction). Instructions
also specify the vector alias format. For example, the I32 specifier
in VADD.I32 q1, q2, q3 signifies that quad registers q1, q2 and
q3 have 4x32-bit integer data.

4. PROPOSED INSTRUCTION SET EXTEN-
SIONS FOR KECCAK

We propose a set of six custom instructions for KECCAK-{ f , p}
[1600,800,400,200] primitives. Similar to other crypto-instructions
(e.g. Intel AES-NI and SHA), our instructions take advantage of the
wide SIMD registers. Not all of our instructions are SIMD in na-
ture. They operate on quad, double or single word (scalar) registers
depending upon the step and KECCAK permutation. Their shape
and functionality is highly customized. In general, we optimized
our instructions for the 1600 and 800 primitives, and we reuse the
same instructions for implementing 400 and 200 primitives. The
proposed instructions are of the register-to-register format, with
two source operands and one destination operand. Operands are
registers, and one of the source operands can also take an immedi-
ate argument. The proposed instructions are compatible with other
NEON instructions and do not require special architectural features
such as non-standard register files or lookup tables. Figure 6 shows
the mapping of the three dimensional KECCAK state to the NEON
registers. For the 1600 bit primitive, we map each lane to a double-

4

d0 d1

d4

d2 d3 d20

d5 d6 d7 d21

d8 d9 d10 d11 d22

d12 d13 d14 d15 d23

d16 d17 d18 d19 d24

x = 0 x = 2 x = 3 x = 4

y = 4

y = 3

y = 2

y = 1

y = 0 s0 s1

s4

s2 s3 s20

s5 s6 s7 s21

s8 s9 s10 s11 s22

s12 s13 s14 s15 s23

s16 s17 s18 s19 s24

x = 0 x = 1 x = 2 x = 3 x = 4

y = 4

y = 3

y = 2

y = 1

y = 0

x = 1

Figure 6: a) Register allocation for KECCAK-f [1600] and KEC-
CAK-f [800,400,200]

word register D0-D24 and for the 800, 400, 200 bit primitives, we
map each lane to single-word register S0-S24. The following sec-
tions are a discussion of each of the six proposed instructions. Un-
less specified, the examples assume the KECCAK-f [1600] permuta-
tion with 64 bit lanes.

4.1 Instruction rl1x
Instruction rl1x (rotate left by 1 and XOR) takes 2 registers as

input (Figure 7 a), left rotates the value in source register 2 by one,
and XORs the resulting value to source register 1. The rl1x in-
struction accelerates the calculation of θ -effect value that is needed
for the θ step. Once the parity of all the five columns is calculated
and stored in five registers, the rl1x instruction operates on any
two parity values and computes one θ -effect value per instruction.
The instruction supports double and single-word NEON registers
with vector sizes of 64, 32, 16 and 8 bits for supporting θ -effect
calculation for KECCAK variants 1600, 800, 400, 200.

4.2 Instruction kxorr64
Instruction kxorr64 (KECCAK XOR and rotate) uses two regis-

ters and an immediate value as operands, XORs the source regis-
ters, left-rotates the result by an immediate offset and returns the
result in a destination register. kxorr64 combines θ , ρ and π steps
in a single instruction. Figure 7 b shows the functionality of kx-
orr64 instruction. Source operand 1 contains a lane that needs
to be transposed to a new location for π step, source operand 2
contains the corresponding θ -effect value, and the immediate field
contains the required ρ offset value. kxorr64 applies θ and ρ steps
and assigns the result to a new destination register (π step).

Accommodating five bits as an immediate value in the instruc-
tion encoding is challenging. VEXT supports a four-bit immediate
field but for supporting 25 different rotation offsets for 25 KEC-
CAK lanes, at least 5 bits are needed. Since our instructions only
support double registers, we used bit 6 of the instruction (used for
defining Quad or Double register type) for encoding one extra bit
of the immediate value. kxorr64 is only used for implementing
KECCAK- f , p[1600] permutations. For permutations of other sizes
we provide a separate instruction xorr.

4.3 Instruction xorr
The functionality of xorr instruction is similar to kxorr64 in

Figure 7b. The only difference is that it operates on single-word
registers Similar to kxorr64, xorr combines θ , ρ and π steps in a
single instruction, but supports 32, 16 and 8 bit rotations for KEC-
CAK-f [800,400,200]. Depending upon the vector size specified,
xorr treats the values in the registers as 1×32, 2×16 or 4×8 bit
vectors and applies the same operation on all the vectors. Since, all
32 rotations for a 32 bit word can be encoded in 5 bit values, unlike
kxorr64, xorr supports full range of rotation.

XOR

d0/s0 d1/s1

d2/s2

kxorr64 d2, d0, d1, #i

xorr.u32 s2, s0, s1, #i

xorr.u16 s2, s0, s1, #i

xorr.u8 s2, s0, s1, #i

ROL
(i)

XOR

ROL
1

d0/s0 d1/s1

d2/s2

rl1x.u64 d2, d0, d1

rl1x.u32 s2, s0, s1

rl1x.u16 s2, s0, s1

rl1x.u8 s2, s0, s1

(a) (b)

Figure 7: a) Functionality of rl1x instruction, b) Functionality
of kxorr64, xorr instruction

4.4 Instruction chi1
chi1 instruction aids χ step of KECCAK. chi1 instruction ac-

cepts 4 lanes (in 2 quad registers) containing the intermediate val-
ues after π step, and applies the χ step on them to finalize two
KECCAK lanes. Like other NEON instructions, chi1 instruction
also support multiple register views. A quad register can be viewed
as 2× 64 bit lanes (used in KECCAK- f [1600]) or 4× 32 bit lanes
(for KECCAK-f [800,400, 200]). The functionality of both the forms
is shown in Figure 8 a.

4.5 Instruction chi2
Since a KECCAK plane has an odd number of lanes, the chi1

instruction can finalize only the first four lanes of the plane. Final-
izing the last lane for every plane requires register rearrangement
followed by VBIC and VEOR NEON instructions. To aid this step,
we provide chi2 instruction which can save these extra computa-
tions. Figure 8 b shows the functionality of chi2. chi2 instruction
accepts 2 quadword registers and produces a double-word register.
The chi2 instruction fits in the category of narrow instructions -
the destination register is smaller then the source registers. In gen-
eral, two chi1 instructions paired with a MOV and a chi2 instruc-
tion can apply the χ step to a complete KECCAKplane. The chi2

instruction applies only to KECCAK- f , p[1600] permutations. For
processing other variants of KECCAK, we have designed a chi3

instruction.

4.6 Instruction chi3
Just like the chi2 instruction, the chi3 (Figure 8 c) instruction

is also an auxiliary instruction that helps fixing the last lane of a
plane without register rearrangement and VEOR and VBIC instruc-
tions. It takes two double-word registers as input source operands,
producing a 32 bit single-word as result. A chi1 instruction fol-
lowed by a chi3 instruction can apply χ step on a complete KEC-
CAK plane. chi3 instruction is used for KECCAK-f [800,400,200]
permutations. Since the χ step only contains XOR, NOT and AND
operations we support only U32 vector size for chi3. Lanes of
sizes 16 and 8 bits can also be stored in 32 bit single-word registers
and chi1 followed by chi3 can perform χ step for KECCAK-f [400]
and KECCAK-f [200].

5. RESULTS
We used the open-source GEM5 simulator for implementation

and benchmarking of the proposed custom instructions. We added

5

chi1.u32 q2, q0, q1

q2

NOT NOT

AND AND

XOR XOR

NOT NOT

AND AND

XOR XOR

q0 q1 q0

chi1.u64 q2, q0, q1

q2

q1

NOT NOT

AND AND

XOR XOR

q0 q1

chi2.u64 d4, q0, q1

AND

XOR

NOT

d4

d0 d1

chi3.u32 s4, d0, d1

AND

XOR

NOT

s4

(a)

(b) (c)

Figure 8: Functionality of instruction a) chi1, b) chi2 and c)
chi3

our instructions to the ARMv7 ISA part of GEM5 and described
their functionality using GEM5’s ISA description language. The
NEON SIMD unit operates using a separate register file and pipeline.
Instructions are sent to NEON pipeline from the ARM side via an
instruction queue. Both the ARM pipeline and NEON pipeline can
work independently as long as the queue is not full. The ARM core
as well as the NEON SIMD unit also support multi-issue. Factors
like instruction latency, instruction queue length, issue width of the
CPU are all implementation specific and difficult to model with a
high degree of accuracy on a simulator. To get a reasonable esti-
mate of the performance improvements we chose a simple timing
CPU model available in GEM5. The timing simple CPU model
executes instructions at a rate of 1 CPI (cycles per instruction) but
takes the latency of memory system into account by adding stalls
on cache accesses. We present our results in terms of dynamic in-
structions committed by the CPU normalized to input message size
of the crypto algorithm.

5.1 Setup
We simulated a single core ARM CPU at 1 GHz with an L1 I

and D cache of 32KB and L2 cache of 2MB. For generating the
executable binaries we used cross-compiled GCC-4.9.2 and added
the instruction encodings to ARM specific part of the GNU assem-
bler. We followed the encoding format for NEON instructions and
made sure that the instruction codes do not conflict with the existing
NEON and ARM instructions. For comparison purposes, we used
the optimized implementations of SHA3 (c = 1024), KEYAK and
KETJE available in KECCAK code package [11]. We used Known
Answer Tests to verify the functional correctness of SHA3(c=1024).
For KEYAK and KETJE we used CAESAR testbench in the KEC-
CAK code package.

5.2 Performance
Table 1 shows the results of our optimized assembly implemen-

tations using proposed custom instructions (CI) compared to the
optimized C, hand optimized 32-bit assembly and NEON assembly
implementations in the KECCAK code package. All the measure-
ments were taken on the GEM5 with the setup discussed above.
The simulation statistics were taken for the complete crypto appli-
cation with an input block size of 10, 100 and 1000 blocks. The
averaged results are shown in instructions committed by CPU per
byte of input data. The expected speedup is calculated against the
optimized NEON or 32 bit assembly implementations based on the
availability of implementation in the KECCAK code package. Ta-
ble 2 gives the instructions committed for processing a single round
of KECCAK- f for different software implementations. Our imple-
mentations using CI reduce the instructions committed by CPU by
a factor of 1.4 to 2.6× depending upon the application. The ex-
pected speedup on a real hardware should also be very similar for
three reasons. First, our implementations of KECCAK primitives
do not incur any branches during the round computations and offer
ILP (instruction-level parallelism) ranging from degree 2 to 4. Sec-
ond, our instructions use simple operations like XOR, AND, NOT
and rotations, which can be completed in single clock cycle in exe-
cution stage of processor’s pipeline. Third, our implementations of
KECCAK round do not cause any register spills that might affect
throughput. Hence, KECCAK applications implemented using cus-
tom instructions should be able to achieve a CPI very close to 1 on
a superscalar processor with low memory latency.

Table 1: Performance in instructions/byte for various KEC-
CAK modes

Mode C 32-bit
ASM NEON CI† Speed

-up
SHA3(c=1024) 243.5 143.9 48.1 21.9 2.2

LAKE KEYAK(E) 61.0 NA 13.4 7.7 1.7
LAKE KEYAK(D) 61.7 NA 14.9 9.2 1.6
RIVER KEYAK(E) 55.2 39.3 NA 14.8 2.6
RIVER KEYAK(D) 57.2 40.6 NA 16.1 2.5

KETJE SR (E) 166.1 87.9 NA 55.0 1.6
KETJE SR (D) 166.1 87.9 NA 55.0 1.6
KETJE JR (E) 309.1 146.6 NA 106.5 1.4
KETJE JR (D) 309.1 146.6 NA 106.5 1.4

† This work. E = Encryption, D = Decryption, NA = Not Available

Table 2: Instructions executed per KECCAK round
Primitive C 32-bit ASM NEON CI

KECCAK-f [1600] 713 414 145 66
KECCAK-f [800] 271 194 NA 56
KECCAK-f [400] 370 217 NA 55
KECCAK-f [200] 361 168 NA 57

5.3 Hardware Cost
To get a reasonable estimate of the hardware overhead of our

proposed design, we created RTL designs for all the six custom
instructions. We assumed that the functional units will get upto
2×128 bit inputs and a 5 bit immediate field and generate a 128 bit
output. For synthesis, we used Synopsys Design Compiler that gen-
erates a netlist using UMC′s 90nm Process. The area estimates for
each instruction have been provided in Table 3 with corresponding

6

gate equivalent (GE) and transistor equivalent counts. An ARMv7-
A based quad-core processor[25] uses an area of 3.8mm2 in 28nm
technology. On converting the area into GE [16], a single ARM
core has around 3.8 million gates. Adding KECCAK instruction
extensions will cost an extra 4658 gates, which adds an overhead
of 0.1% while significantly improving the performance of hashing,
MACing and a range of other cryptographic applications based on
KECCAK sponge and duplex construction. Apart from the hard-
ware overhead of functional units, instruction decode logic will
also have some hardware overhead of additional custom instruc-
tions. But since our instructions follow similar encoding format as
that of other NEON instructions, the decoding overhead should be
negligible.

Table 3: Area, GE and Transistor count estimates for the
proposed custom instructions

Instruction µ2 Gate equiv. Transistor equiv.
rl1x 1238 310 1238

kxorr64 7474 1869 7474
xorr 4884 1221 4884
chi1 3576 894 3576
chi2 966 242 966
chi3 486 122 486
Total 18624 4658 18624

6. PORTABILITY ASPECTS
The instruction design and results presented in this paper are for

ARMv7 ISA with NEON SIMD. We will next describe how these
instructions can be ported to other platforms. While we do not
claim that the speedup and code footprint reduction will be same
as shown in Section 5 for these other targets, we will explain how
our instructions can improve KECCAK’s performance on those plat-
forms.

Table 4 shows the feasibility of instructions with respect to three
different architectures, namely Intel AVX (128 bit SIMD), generic
64 bit platforms and 32 bit embedded platforms. This feasibility
analysis is based on the number of operands supported by the ISA,
the register width and the instruction encoding width.

Table 4: Feasibility of the proposed instructions on dif-
ferent platforms

Instruction Intel AVX 64-bit Arch 32-bit Arch
rl1x 3 3* 3*

kxorr64 3 3 7

xorr 3 3 3

chi1 3 7 7

chi2 3 7 7

chi3 3 3 7

* Not all variants supported

6.1 Intel AVX (128 bit SIMD)
AVX[15] is the SIMD instruction set supported by Intel proces-

sors. It supports 128 bit wide registers and instructions with three
operand, nondestructive format (dest = src1 + src2) like ARM
NEON. AVX supports sixteen 128 bit XMM registers, which were
later extended to 256 and 512 bits in AVX2 and AVX-512, with
backward compatibility to 128 bit XMM registers. Since our de-
sign is targeted for 128 bit wide registers, we will only discuss the

portability aspects of our instructions on 128 bit SIMD. The in-
struction design space will change with AVX2 and AVX-512 as a
chunk of the KECCAK state can be stored in wider registers. Un-
like NEON, AVX does not support aliasing of 128 bit registers to
two 64 bit or four 32 bit registers . Since, some of the instructions
like (rl1x, xorr) need access to an independent 64 bit or 32 bit
scalar value inside a 128 bit register, we propose to encode scalar
index in the instruction encoding. Intel Architectures support in-
struction encodings of up to 120 bits, so a 2 bit scalar index, for
each register in the instruction can be encoded in the instruction
encoding to apply the operation only to a particular scalar. Thus,
all of the six instructions can be implemented on an Intel platform
supporting AVX without any major architectural changes.

6.2 64-bit Architectures
Some of the instructions can also be implemented on 64 bit archi-

tectures like ARMv8, x64. All proposed instructions except chi1
and chi2 operate on 64/32 bit operands and produce a 64/32 bit
result. Implementing kxorr64 and rl1x instructions on 64 bit
platforms can give a performance boost to KECCAK as they can
accelerate the θ , ρ and π step. The chi1 & chi2 instructions re-
quire 128 bit wide registers and cannot be supported on a 64 bit
architecture, but alternatively χ step can be accelerated by sup-
porting ternary instruction like ternchi(dest = dest⊕(∼src1
& src2)) or andn (dest = ∼src1 & src2). Smaller versions
of KECCAK can also benefit from these instructions, if a w bit lane
is stored in a 64 bit register and the word size for rotation 64, 32,
16 and 8 is passed to hardware as instruction encoding.

6.3 32-bit Architectures
For 32 bit embedded platforms, rl1x and xorr instructions can

be very useful. All optimized 32 bit software implementations use
bit-interleaving technique to break a bigger 64 bit lane to smaller
32 bit lane. These 32 bit lanes are used independently for rota-
tions and other KECCAK steps. A 32 bit version of rl1x and xorr

instruction can help accelerate the θ , ρ and π step on smaller em-
bedded platforms. Like 64 bit, for 32 bit architectures also, andn
or ternchi can be useful for accelerating χ step.

7. CONCLUSION
This paper presents a thorough analysis of the instruction set de-

sign space for KECCAK primitives. We have proposed a set of six
custom instructions based on NEON instruction set in ARMv7 ISA,
which can accelerate KECCAK- f and KECCAK-p primitives of size
1600, 800, 400 and 200 bits. To demonstrate the flexibility of our
extensions we implemented five different KECCAK applications:
SHA3, LAKE KEYAK, RIVER KEYAK, KETJE SR and KETJE JR
and we analyzed the portability of the proposed instructions on
Intel AVX and generic 64 and 32 bit platforms. To support our
claims, we show performance improvements in instructions com-
mitted per byte of input data, using cycle accurate GEM5 simu-
lator and provide hardware cost of the proposed extensions in GE
using UMC′s 90nm technology. We show that with the proposed
extensions, KECCAK applications can achieve a performance gain
between 1.4 - 2.6× over hand optimized assembly on ARMv7 at a
hardware overhead of just 4658 GEs.

8. ACKNOWLEDGMENT
This research was supported in part through the National Science

Foundation Grant 1441710, and in part through the Semiconductor
Research Corporation.

7

9. REFERENCES
[1] ARM Architecture Reference Manual ARMv7-A and

ARMv7-R edition Issue C. online at
infocenter.arm.com/help/index.jsp?topic=
/com.arm.doc.ddi0406c/index.html, 2014.

[2] L. Batina, D. Hwang, A. Hodjat, B. Preneel, and
I. Verbauwhede. Hardware/software co-design for
hyperelliptic curve cryptography (HECC) on the 8051µp. In
Cryptographic Hardware and Embedded Systems - CHES
2005, 7th International Workshop, Edinburgh, UK, August
29 - September 1, 2005, Proceedings, pages 106–118, 2005.

[3] G. Bertoni, J. Daemen, M. Peeters, G. V. Assche, , and R. V.
Keer. KECCAK implementation overview. online at
http://keccak.noekeon.org/Keccak-implementation-3.2.pdf,
May 2012.

[4] G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche.
Sponge functions. Ecrypt Hash Workshop, May 2007.

[5] G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche.
Sponge-Based Pseudo-Random Number Generators. In
S. Mangard and F.-X. Standaert, editors, CHES, volume
6225 of Lecture Notes in Computer Science, pages 33–47.
Springer, 2010.

[6] G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche.
Duplexing the sponge: single-pass authenticated encryption
and other applications. In Selected Areas in Cryptography
(SAC), 2011.

[7] G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche. On the
security of the keyed sponge construction. Symmetric Key
Encryption Workshop (SKEW), February 2011.

[8] G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche. The
KECCAK reference. online at
http://keccak.noekeon.org/Keccak-reference-3.0.pdf,
January 2011.

[9] G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche.
CAESAR submission: Ketje v2. online at
http://ketje.noekeon.org/Ketje-1.1.pdf, March 2014.

[10] G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche.
CAESAR submission: Keyak v2. online at
http://keyak.noekeon.org/Keyak-2.1.pdf, December 2015.

[11] G. Bertoni, J. Daemen, M. Peeters, G. V. Assche, and R. V.
Keer. The Keccak Code Package. online at
https://github.com/gvanas/KeccakCodePackage, 2016.

[12] N. L. Binkert, B. M. Beckmann, G. Black, S. K. Reinhardt,
A. G. Saidi, et al. The gem5 simulator. SIGARCH Computer
Architecture News, 39(2):1–7, 2011.

[13] R. Buchty, N. Heintze, and D. Oliva. Cryptonite - A
programmable crypto processor architecture for
high-bandwidth applications. In Organic and Pervasive
Computing - ARCS 2004, International Conference on
Architecture of Computing Systems, Augsburg, Germany,
March 23-26, 2004, Proceedings, pages 184–198, 2004.

[14] J. Constantin, A. Burg, and F. K. Gürkaynak. Investigating
the potential of custom instruction set extensions for SHA-3
candidates on a 16-bit microcontroller architecture. IACR
Cryptology ePrint Archive, 2012:50, 2012.

[15] Intel. Corporation. Intel 64 and IA-32 Architectures Software
Developers Manual. online at http:
//download.intel.com/design/processor/manuals/253665.pdf,
May 2011.

[16] Samsung. Corporation. Samsung Foundry 32/28nm
Low-Power High-K Metal Gate Logic Process and Design
Ecosystem. online at http://www.samsung.com/us/business/

oem-solutions/pdfs/Foundry_32-28nm_Final_0311.pdf,
March 2011.

[17] C. Demerjian. A long look at how ARM licenses chips.
online at http://semiaccurate.com/2013/08/07/a-long-look-
at-how-arm-licenses-chips/, August 2013.

[18] M. J. Dworkin. Sha-3 standard: Permutation-based hash and
extendable-output functions. Federal Inf. Process. Stds.
(NIST FIPS) - 202, August 2015.

[19] A. Frumusanu. Qualcomm Announces Snapdragon 625, 425
& 435 Mid- and Low-end SoCs. online at
http://anandtech.com/show/10030/qualcomm-announces-
snapdragon-625-425-435-mid-and-owend-socs, February
2016.

[20] B. Jungk and J. Apfelbeck. Area-efficient fpga
implementations of the sha-3 finalists. In Reconfigurable
Computing and FPGAs (ReConFig), 2011 International
Conference on, pages 235–241, Nov 2011.

[21] E. Käsper and P. Schwabe. Faster and timing-attack resistant
AES-GCM. In Cryptographic Hardware and Embedded
Systems - CHES 2009, 11th International Workshop,
Lausanne, Switzerland, September 6-9, 2009, Proceedings,
pages 1–17, 2009.

[22] K. Sakiyama, L. Batina, B. Preneel, and I. Verbauwhede.
Superscalar coprocessor for high-speed curve-based
cryptography. In Cryptographic Hardware and Embedded
Systems - CHES 2006, 8th International Workshop,
Yokohama, Japan, October 10-13, 2006, Proceedings, pages
415–429, 2006.

[23] K. Seto and M. Fujita. Custom instruction generation with
high-level synthesis. In Application Specific Processors,
2008. SASP 2008. Symposium on, pages 14–19, June 2008.

[24] A. L. Shimpi. Apple’s Cyclone Microarchitecture Detailed.
online at http://www.anandtech.com/show/7910/apples-
cyclone-microarchitecture-detailed, March 2014.

[25] Y. Shin, K. Shin, P. Kenkare, R. Kashyap, H. J. Lee, et al.
28nm high- metal-gate heterogeneous quad-core cpus for
high-performance and energy-efficient mobile application
processor. In Solid-State Circuits Conference Digest of
Technical Papers (ISSCC), 2013 IEEE International, pages
154–155, Feb 2013.

[26] Y. Wang, Y. Shi, C. Wang, and Y. Ha. Fpga-based sha-3
acceleration on a 32-bit processor via instruction set
extension. In Electron Devices and Solid-State Circuits
(EDSSC), 2015 IEEE International Conference on, pages
305–308, June 2015.

[27] P. Yalla, E. Homsirikamol, and J. Kaps. Comparison of
multi-purpose cores of keccak and AES. In Proceedings of
the 2015 Design, Automation & Test in Europe Conference &
Exhibition, DATE 2015, Grenoble, France, March 9-13,
2015, pages 585–588, 2015.

8

infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0406c/index.html
infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0406c/index.html
http://keccak.noekeon.org/Keccak-implementation-3.2.pdf
http://keccak.noekeon.org/Keccak-reference-3.0.pdf
http://ketje.noekeon.org/Ketje-1.1.pdf
http://keyak.noekeon.org/Keyak-2.1.pdf
https://github.com/gvanas/KeccakCodePackage
http://download.intel.com/design/processor/manuals/253665.pdf
http://download.intel.com/design/processor/manuals/253665.pdf
http://www.samsung.com/us/business/oem-solutions/pdfs/Foundry_32-28nm_Final_0311.pdf
http://www.samsung.com/us/business/oem-solutions/pdfs/Foundry_32-28nm_Final_0311.pdf
http://semiaccurate.com/2013/08/07/a-long-look-at-how-arm-licenses-chips/
http://semiaccurate.com/2013/08/07/a-long-look-at-how-arm-licenses-chips/
http://anandtech.com/show/10030/qualcomm-announces-snapdragon-625-425-435-mid-and-owend-socs
http://anandtech.com/show/10030/qualcomm-announces-snapdragon-625-425-435-mid-and-owend-socs
http://www.anandtech.com/show/7910/apples-cyclone-microarchitecture-detailed
http://www.anandtech.com/show/7910/apples-cyclone-microarchitecture-detailed

	Introduction
	Novelty Claims
	Related Work

	Cryptographic Sponge and keccak
	Cryptographic Sponge and Duplex Construction with Keccak
	Keccak-f and Keccak-p Permutations

	Design Exploration for Keccak Custom Instructions
	Cutting the Keccak State
	ARMv7 ISA and NEON SIMD

	Proposed Instruction Set Extensions for Keccak
	Instruction rl1x
	Instruction kxorr64
	Instruction xorr
	Instruction chi1
	Instruction chi2
	Instruction chi3

	Results
	Setup
	Performance
	Hardware Cost

	Portability Aspects
	Intel AVX (128 bit SIMD)
	64-bit Architectures
	32-bit Architectures

	Conclusion
	Acknowledgment
	References

