TOWARDS SECURE CRYPTOGRAPHIC SOFTWARE IMPLEMENTATION AGAINST SIDE-CHANNEL POWER ANALYSIS ATTACKS

Northeastern University Energy-Efficient and Secure Systems Lab
Outline

• **Details of Keccak**
• Previous attacks on Keccak
• Side-channel attacks on R_1
• Conclusion
Details of Keccak (1)

- Selected as the winner of the NIST hash function competition on October 2, 2012
- Draft FIPS PUB 202, May 2014
 - SHA3-224, SHA3-256, SHA3-384, SHA3-512, SHAKE128, SHAKE256
 - Internal state size: 1600 (5 × 5 × 64)

- In this paper:
 - 320 key bits, fill the first plane
Details of Keccak (2)

\[R_{i+1} = \iota \circ \chi \circ \pi \circ \rho \circ \theta(R_i), \quad i \in \{0, 1 \ldots 23\} \]
Details of Keccak (3)

- θ is a linear operation which involves 11 input bits and outputs a single bit.

$$S'(x,y,z) = S(x,y,z) \oplus (\oplus_{i=0}^{4} S(x-1,i,z)) \oplus (\oplus_{i=0}^{4} S(x+1,i,z-1)).$$
Details of Keccak (4)

- ρ is the permutation over the bits along the z-axis.
- π changes x and y of the bits.
Details of Keccak (5)

- χ is the only non-linear step
- ι is addition with a constant number
Outline

• The details of Keccak
• Previous attacks on Keccak
• Side-channel attacks on R_1
• Conclusion
Side-channel attacks on θ (1)

- Previous papers focus on θ
 - The first step of Keccak
 - Intermediate variables are stored in registers for software implementations
 - Hardware implementations also have leakage of θ because of Keccak properties

P. Luo, Y. Fei, X. Fang, A. Ding, M. Leeser, and D. Kaeli. Power analysis attack on hardware implementation of MAC-keccak on FPGAs. In ReConFigurable Computing and FPGAs (ReConFig), 2014 International Conference on, pages 1-7, Dec 2014.
Outline

- The details of Keccak
- Previous attacks on Keccak
- Side-channel attacks on R_1
- Conclusion
Side-channel attacks on R_1 (1)

- Each χ_{out} bit involves 3 bits of π_{out};
- Each π_{out} bit involves 2 key bits.

Conclusion:
(1) One bit SNR is too low;
(2) One bits involves at least 6 key bits.
Side-channel attacks on R_1 (2)

5 bits of each row operate on each other, thus 11 key bits in total. Attackable?
Side-channel attacks on R_1 (3)

Hamming distance:

$$HD(P([0:4],4,0), R_1([0:4],4,0))$$

$P([0:4],4,0)$ is known, how to get R_1:

- $R_1(0,4,0) \leftrightarrow \theta_{out}(2,0,2) \leftrightarrow P(2,0,2)$
- $R_1(1,4,0) \leftrightarrow \theta_{out}(3,1,9) \leftrightarrow P(3,1,9)$
- $R_1(2,4,0) \leftrightarrow \theta_{out}(4,2,25) \leftrightarrow P(4,2,25)$
- $R_1(3,4,0) \leftrightarrow \theta_{out}(0,3,23) \leftrightarrow P(0,3,23)$
- $R_1(4,4,0) \leftrightarrow \theta_{out}(1,4,62) \leftrightarrow P(1,4,62)$

$P(2,0,2)$ is also a key bit, thus 11 key bits
Side-channel attacks on R_1 (4)

π and ρ only change the position of bits, the values are not changed.

$R_1(0,4,0) \leftrightarrow \theta_{out}(2,0,2) \leftrightarrow P(2,0,2)$
$R_1(1,4,0) \leftrightarrow \theta_{out}(3,1,9) \leftrightarrow P(3,1,9)$
$R_1(2,4,0) \leftrightarrow \theta_{out}(4,2,25) \leftrightarrow P(4,2,25)$
$R_1(3,4,0) \leftrightarrow \theta_{out}(0,3,23) \leftrightarrow P(0,3,23)$
$R_1(4,4,0) \leftrightarrow \theta_{out}(1,4,62) \leftrightarrow P(1,4,62)$
Side-channel attacks on R_1 (5)

$R_1(0,4,0) \leftrightarrow \theta_{out}(2,0,2) \leftrightarrow P(2,0,2)$
$R_1(1,4,0) \leftrightarrow \theta_{out}(3,1,9) \leftrightarrow P(3,1,9)$
$R_1(2,4,0) \leftrightarrow \theta_{out}(4,2,25) \leftrightarrow P(4,2,25)$
$R_1(3,4,0) \leftrightarrow \theta_{out}(0,3,23) \leftrightarrow P(0,3,23)$
$R_1(4,4,0) \leftrightarrow \theta_{out}(1,4,62) \leftrightarrow P(1,4,62)$

What can we recover:

$k_{g_1} = P(2,0,2) \oplus P(1,0,2) \oplus P(3,0,1)$
$k_{g_2} = P(2,0,9) \oplus P(4,0,8)$
$k_{g_3} = P(3,0,25) \oplus P(0,0,24)$
$k_{g_4} = P(4,0,23) \oplus P(1,0,22)$
$k_{g_5} = P(1,0,62) \oplus P(2,0,61)$
Side-channel attacks on R₁ (6)

(a) Key guess for R₁([0:4],4,0)
Side-channel attacks on R_1 (7)

(b) Success rate of attacking $R_1([0:4],4,0)$

![Success rate graph](image)
Side-channel attacks on R_1 (8)

\[
\begin{align*}
KG_1 &= \{S(x-1,0,z) \oplus S(x,0,z) \oplus S(x+1,0,z-1)\} \\
KG_2 &= \{S(x-1,0,z) \oplus S(x+1,0,z-1)\}
\end{align*}
\]

\[x \in \{0,1\ldots\}, \ z \in \{0,1\ldots63\}.
\]

- Combine 2-bit XORs and 3-bit XORs to recover key bits
- There are 320 identical 2-bit XORs and 3-bit XORs
Outline

- Details of Keccak
- Previous attacks on Keccak
- Side-channel attacks on R_1
- Conclusion
Conclusion

• The first round output of Keccak can be attacked
• Attacking methods are different for software/hardware implementations
• Countermeasures should be added
THANKS!

http://tescase.coe.neu.edu/