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Abstract
Heterogeneity is a fact of life for modern storage servers.
For example, a server may spread terabytes of data across
many different storage media, ranging from magnetic disks,
DRAM, NAND-based solid state drives (SSDs), as well as
hybrid drives that package various combinations of these
technologies. It follows that access latencies to data can
vary hugely depending on which media the data resides on.
At the same time, modern storage systems naturally retain
older versions of data due to the prevalence of log-structured
designs and caches in software and hardware layers. In a
sense, a contemporary storage system is very similar to a
small-scale distributed system, opening the door to consis-
tency/performance trade-offs. In this paper, we propose a
class of local storage systems called StaleStores that sup-
port relaxed consistency, returning stale data for better per-
formance. We describe several examples of StaleStores, and
show via emulations that serving stale data can improve
access latency by between 35% and 20X. We describe a
particular StaleStore called Yogurt, a weakly consistent lo-
cal block storage system. Depending on the application’s
consistency requirements (e.g. bounded staleness, mono-
tonic reads, read-my-writes, etc.), Yogurt queries the access
costs for different versions of data within tolerable staleness
bounds and returns the fastest version. We show that a dis-
tributed key-value store running on top of Yogurt obtains a
6X speed-up for access latency by trading off consistency
and performance within individual storage servers.
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Devices Throughput Latency Cost / GB
Registers - 1 cycle -
Caches - 2-10ns -
DRAM 10s of GB/s 100-200ns $10.00
NVDIMM 10s of GB/s 100-200ns $10.00
NVMM 10s of GB/s 800ns $5.00
NVMe 2GB/s 10-100us $1.40
SATA SSD 500MB/s 400us $0.40
Disk 100MB/s 10ms $0.05

Figure 1. The new storage/memory hierarchy (from a
LADIS 2015 talk by Andy Warfield).

Categories and Subject Descriptors D.4.2 [Storage Man-
agement]: Secondary storage and storage hierarchies; C.2.4
[Distributed Systems]: Distributed applications; H.2.4 [Sys-
tems]: Concurrency; H.3.4 [Systems and Software]: Con-
currency awareness systems

General Terms Design, Experimentation, Performance
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1. Introduction
The ongoing explosion in the diversity of memory and stor-
age technology has made hardware heterogeneity a fact of
life for modern cloud storage servers. Current storage sys-
tem designs typically use a mix of multi-device idioms
– such as caching, tiering, striping, mirroring, etc. – to
spread data across a range of devices, including hard disks,
DRAM, NAND-based solid state drives (SSDs), and byte-
addressable NVRAM or Phase Change Memory (PCM).
Each such storage medium exhibits vastly different through-
put and latency characteristics; access latencies to data can
vary considerably depending on which media the data re-
sides on. Figure 1 shows the performance characteristics and
cost of some of the storage options available today.

In parallel, multi-device storage systems are increasingly
multi-versioned, retaining older versions of data that are typ-



ically not exposed to the application. Often, multi-versioning
is a side-effect of log-structured designs that avoid writing in
place; for example, SSDs expose a single-version block ad-
dress space to applications, but internally log data to avoid
triggering expensive erase operations on block rewrites. In
other cases, tiering or caching strategies can introduce multi-
ple versions by replicating data and synchronizing lazily; for
example, SSDs typically have DRAM-based write caches
that are lazily flushed to the underlying flash.

We observe that the existence of multiple versions of data
within a storage system – and the non-uniform performance
characteristics of the storage media that these versions re-
side on – creates an opportunity for trading off consistency
or staleness for performance. We make a case for weakly
consistent local storage systems: when applications access
data, we want the option of providing them with stale data
in exchange for better performance. This behavior is in con-
trast to the strong consistency or linearizability offered by
existing storage systems, which guarantee that read opera-
tions will reflect all writes that complete before the read was
issued [7]. Accessing older versions can provide better per-
formance for a number of reasons: the latest version might
be slow to access because it resides on a write cache that
is unoptimized for reads [18], or on a hard disk stripe that
is currently logging writes [16] or undergoing maintenance
operations such as a RAID rebuild or scrubbing. In all these
cases, accessing older versions can provide superior latency
and/or throughput. Later in the paper, we describe these and
other scenarios in detail.

The killer app for a weakly consistent local storage sys-
tem is distributed cloud storage. Services such as S3, Dy-
namoDB, and Windows Azure Storage routinely negotiate
weak consistency guarantees with clients, primarily to mask
round-trip delays to remote data centers. A client might re-
quest read-my-writes consistency, or monotonic reads, or
bounded-writes consistency from the cloud service, indicat-
ing its willingness to tolerate an older version of data for
better performance. For example, in the case of monotonic
reads consistency, a client that last saw version 100 of a key
is satisfied with any version of that key equal to or greater
than 100.

Traditionally, a distributed storage service leverages
weaker consistency requirements to direct the client’s re-
quest to nearby servers that can provide the desired consis-
tency (e.g., contain a version equal to or greater than 100).
The server itself – typically implemented as a user-level pro-
cess over a strongly consistent local storage subsystem –
strenuously returns the latest value of the key that it stores
(e.g., version 200), ignoring the presence of older, poten-
tially faster versions on the underlying subsystem that would
satisfy the guarantee (e.g., version 110, 125, etc.). Instead, a
cloud storage service could propagate knowledge of weaker
consistency requirements down to the local storage subsys-

tem on each individual server, allowing it to return older data
at faster speeds.

Accordingly, we propose a new class of local storage sys-
tems – embedded key-value stores, filesystems, and block
stores – that are consistency-aware, trading off staleness
for performance. We call these StaleStores. While differ-
ent StaleStores can have widely differing external APIs and
internal designs, they share a number of common features,
such as support for multi-versioned access, and cost estima-
tion APIs that allow applications to determine the fastest ver-
sion for a particular data item. We describe several examples
of StaleStores drawn from existing storage system designs in
Section 2; for three such designs, we show via high-fidelity
emulations that accessing older versions can improve access
latency, by up to 20X, 35%, and 60% respectively.

In addition, we describe the design and implementation
of a particular StaleStore: a log-structured block store called
Yogurt. We implement over Yogurt a variant of a distributed
cloud storage system called Pileus [19] that supports multi-
ple consistency levels, and show that exploiting the perfor-
mance/consistency trade-off within individual servers pro-
vides a 6X speed-up in access latency.

This paper makes the following contributions:

• We are the first to explore the consistency/performance
trade-off within a storage server.

• We describe StaleStores, a new class of local storage sys-
tems that can weaken consistency for better performance.

• Finally, we detail the necessary APIs to trade off con-
sistency and performance in a server, and design, imple-
ment, and evaluate a block-level StaleStore.

2. The Case for StaleStores
Our argument for StaleStores relies on two key observations.
First, local storage systems are increasingly multi-versioned.
Second, older versions are often faster to access. We now
provide examples of such systems. In addition, we built
high-fidelity emulations of three systems that are not func-
tionally complete (e.g., they do not handle crash recovery)
but faithfully mimic the I/O behavior of the originals. Using
these emulations, we show that accessing older versions can
significantly cut access latency.

2.1 Why are older versions sometimes faster?
S1. Single-disk log-structured stores. The simplest and
most common example of a system design that internally
stores faster stale versions of data is a log-structured storage
system, either in the form of a filesystem [15] or block
store [4]. Such systems extract sequential write bandwidth
from hard disks by logging all updates. This log-structured
design results in the existence of stale versions; furthermore,
these stale versions can be faster to access if they are closer
to the disk arm than the latest version. Previous work has
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Figure 2. In the Griffin system, being able to read older
versions from a SSD than the latest version from the disk
cache can be faster.
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Figure 3. Read latency and disk cache hit rate of Griffin
with different disk to SSD data migration trigger sizes. Ac-
cessing stale data can avoid reading from the disk.

explored storing a single version of data redundantly and
accessing the closest copy [23].
S2. SSD FTLs (Flash Translation Layers). SSDs based
on NAND flash act as collections of small log-structured
stores: each erase block consists of multiple 4KB physical
pages that (for many devices) must be written in sequence
and are erased or reset together during garbage collection.
Logging results in stale versions, which can be faster to
access if the latest version happens to be in an erase block
that’s undergoing compaction or garbage collection.
S3. Log-structured arrays. Some designs chain a log over
multiple disks. Gecko [16] is a storage array with a chained

c1c0 c2 c3 c4 c5 c6 c7 ... cN

c1c7

c0 c2

c3 c5

Disk: stores deduplicated data chunks.

Read addr 2 

Hash key v2→c4

Hash key v1→c3

Regular read to the latest version.

Staleness allowed read 

to an older version.

deduplicated

chunk

Memory cache

Figure 4. In a deduplicated system with cache, data items
are shared with many others. If an older version is referenced
by another address and is inside the cache, reading this than
the latest version in the disk is faster.

log; updates proceed to the tail drive of the log, while reads
are served by all the disks in the log. In such a design,
reads from disks in the body of the log are faster since they
do not interfere with writes. Accordingly, reading a stale
version in the body of the chained log may be faster – and
less disruptive to write throughput – than reading the latest
version from the tail drive.
S4. Durable write caches that are fast for writes but slow
for reads. Griffin [18] layers a disk-based write cache over
an SSD; the goal is to coalesce overwrites before they hit the
SSD, reducing the rate at which the SSD wears out. In such a
system, the latest version resides on the write cache; reading
it can trigger a slow, random read on the disk that disrupts
write throughput. On the other hand, older versions live in
the backing SSD and are much faster to access (Figure 2). A
similar example is the disk-caching-disk (DCD) [9], where
reads can be faster on the backing disk since the data on it
has spatial locality (in contrast to the log-structured write
cache, which has temporal locality).

We implemented an emulator for the Griffin system. Fig-
ure 3-(a) shows the latency benefit of serving older versions.
The y-axis is the latency; the x-axis is the parameter for
the bounded staleness consistency guarantee, signifying how
stale the returned value can be in terms of the number of
updates it omits. We run a simple block storage workload
where a 4GB address space is written to and 8 threads issue
random reads and writes with 9 to 1 ratio. Depending on the
configuration, the Griffin system flushes data from the disk
cache to SSD whenever 128MB to 1GB worth of data is writ-
ten to the disk. The figure shows that allowing the returned
value to be stale by even one update can reduce read latency
down to 1/8 and down to 1/20 by allowing values stale by
four updates. Figure 3-(b) shows the ratio of reads hitting
the disk cache. Read accesses to disk can be eliminated by
allowing values stale by five updates.
S5. Deduplicated systems with read caches. Systems often
deduplicate data to save space. In such systems, an older
version of a data item may be identical to the latest, cached
version of some other data item; in this case, fetching the
older version can result in a cache hit (Figure 4). Previous
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Figure 5. Read latency and memory cache hit rate on stale
data in a deduplicated system with different deduplication
rates. Accessing stale data results in higher cache utilization
and lower read latency.

work has explored the use of content similarity to speed up
access to data [10].

Figure 5 shows the performance and memory cache hit
rate on stale data of a consistency-aware deduplication sys-
tem. The system is a block store which deduplicates 4KB
blocks. 8 threads randomly read and write blocks with 9 to
1 ratio within 4GB address space. The overall deduplication
ratio is controlled to be 30 to 90 percent. The system uses a
disk as a primary storage and 256MB DRAM as a read/write
cache, which is indexed by the hash key and uses LRU pol-
icy. The performance improvement plateaus as the allowed
staleness bound increases, but the performance is improved
by 10 to 35% depending on the deduplication ratio (Figure 5-
(a)). Such performance improvement trends follow the cache
hit rate on stale data (Figure 5-(b)).
S6. Fine-grained logging over a block-grain cache. Con-
sider a log-structured key-value store implemented over an
SSD (e.g., like FAWN [1]), which in turn has an internal
DRAM cache. New key-value updates are merged and writ-
ten as single blocks at the tail of a log layered over the SSD’s
address space. As key-value pairs are overwritten, blocks in
the body of the log hold progressively fewer valid key-value
pairs, reducing the effectiveness of the DRAM cache within
the SSD. However, if stale values can be tolerated, the effec-
tiveness of the DRAM cache increases since it holds valid

1-v5... 2-v2 3-v6 2-v3 5-v2 1-v6 4-v2

1-v50-v1

1-v6 4-v2

2-v2 3-v6

SSD: logs fine-grained data smaller than a block.

Memory cache

Get key 2

Regular read to the latest version.
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Staleness allowed read 

to an older version.

←Block size→ 
key

version

Figure 6. If data items are smaller than the cache block in
a fine grained logging system, other items (e.g. 2-v2) can
follow an item (e.g. 3-v6) being read into the cache. If the
item that followed is an older version, accessing the older
item can be faster than the latest item in the SSD.
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Figure 7. Read latency and memory cache hit rate on stale
data in system with fine-grained logging over a block-grain
cache. The read latency decreases and the cache hit rate
increases when the allowed staleness of data and the number
of items placed in a cache block increase.

versions – stale or otherwise – for a larger set of keys (Fig-
ure 6).

Figure 7 shows the performance of a simple emulation
of a key-value store layered over an SSD with a 256MB
DRAM cache. 1 million key-value pairs are present in the
system and 8 threads randomly read and write them with
9 to 1 ratio. The key-value pair size is parameterized such
that 2 to 16 pairs can be stored in a block. If N key-value



pairs fit in a block, at most N − 1 key-value pairs can be
wastefully loaded in the cache. Allowing access to older
versions using the bounded staleness consistency re-enables
utilization of potentially wasteful data items in the cache
block (Figure 7-(b)) and higher utilization of DRAM cache
results in increased performance up to 60% (Figure 7-(a)).
S7. Systems storing differences from previous versions.
Some log-structured systems store new data as deltas against
older versions. In Delta-FTL [22], when a logical address
is overwritten, the system does not log an entire new 4KB
block; instead, it logs a delta against the existing version.
For instance, if only the first 100 bytes of the block have
been changed by the overwrite, the system only logs the
new 100 bytes. In such a system, accessing the latest version
requires reading both some old version and one or more
deltas, triggering multiple 4KB page reads. Accessing an
older version can be faster since it requires fewer reads.

All the above cases keep older versions to achieve better
performance, storage durability, storage utilization, ease of
data maintenance, and so on, but being able to access older
versions faster than the latest version is a side effect. In this
paper, we explicitly utilize this side effect – whenever it
is possible – to speed up storage performance. To build a
system to access potentially faster older versions, the system
should 1) maintain multiple versions of data, 2) be aware of
access speed/cost for each version, 3) guarantee consistency
semantics to safely access old versions, and 4) support new
APIs for these new features.

3. Design Space for StaleStores
For any cloud storage service, the software stack on a sin-
gle server typically contains a top-most layer that runs as
a user-space process and exposes some high-level abstrac-
tion – such as key-value pairs and files – over the network to
applications running on remote clients. This process acts in
concert with other processes to implement a distributed stor-
age service; for example, it might act as a primary or sec-
ondary replica, or as a caching node. If the distributed stor-
age service supports weaker consistency guarantees, clients
can mandate that reads satisfy some such guarantee (such as
read-your-writes or monotonic reads); typically they do so
by specifying some set of versions which are permissible.
Many systems rely on timestamps that provide an ordering
across versions; reads can then specify the earliest timestamp
they can tolerate without violating the required guarantee.

As a concrete example of a cloud storage service that sup-
ports weaker consistency levels, the Pileus system [19] con-
sists of a single primary server and multiple backup servers.
A client writes a new key-value pair by sending it to the pri-
mary, which assigns a monotonically increasing timestamp
to it before writing it to local storage. The primary then asyn-
chronously sends the update to the backups, which apply up-
dates in timestamp order. As a result, a global ordering exists
across all updates (and consequently all versions of data). At

any given point in time, each backup server contains a strict
prefix of this global order corresponding to some timestamp.
Clients can then obtain weaker consistency guarantees by
specifying a timestamp for their reads, and contacting the
closest server that is storing a prefix which extends beyond
this timestamp.

For example, a client has written a key-value pair at the
primary and was told by the primary that the write’s times-
tamp is T44. The primary has seen 100 writes, including
the client’s write, and assigned them timestamps T1 to T100.
Backup A has seen writes up to timestamp T50. Backup B
has seen writes up to T35. The client then wishes to issue a
read on the same key K satisfying the read-your-writes guar-
antee; i.e., it requires the read to reflect its own latest write,
but not necessarily the latest writes by other clients. Accord-
ingly, it contacts the backup server closest to it with a read
request annotated with T44. Backup B cannot satisfy this re-
quest since it has seen writes only up to T35. Backup A, on
the other hand, can satisfy this request by returning any ver-
sion of K with a timestamp higher than or equal to T44.

In current distributed storage services, each individual
server is typically single-versioned (unless the distributed
service exposes reads to older versions as a feature). Specif-
ically, existing systems do not have individual servers selec-
tively returning older versions in order to gain better perfor-
mance from their local storage stack. In the example above,
we want backup A to be capable of selecting a version be-
tween T44 and T50 that can be returned the fastest from its
local storage. This is the capability we seek to explore.

3.1 What is a StaleStore?
Abstractly, a StaleStore is a single-node storage system that
maintains and serves multiple versions. Different StaleStores
support different application-facing APIs – such as files,
key-value pairs, block storage, etc. – that are augmented in
similar ways to allow applications to trade off consistency
for performance.

In designing the StaleStore abstraction, we observe that
the information required to support consistency and perfor-
mance trade-offs is typically split between the application
and the store. The application (i.e., the server process imple-
menting the distributed cloud store) understands consistency
(i.e., timestamps), and the store understands performance
characteristics (i.e., where data is placed and how fast it can
be accessed). Required is an API that allows performance in-
formation to flow up the stack and consistency information
to flow down the stack. Specifically, we push consistency in-
formation down the stack by associating versions within the
multi-version store with application-level timestamps; con-
versely, we push performance information up the stack by
allowing applications to query the estimated cost of issuing
a read operation against a specific version.

Accordingly, a StaleStore API has four characteristics. In
the following descriptions, we use the terms ‘timestamp’ and
‘version number’ interchangeably. In addition, we use the



Key-Value
StaleStore API

Parameters Description

Get key, version # Reads a key corresponding to the version #.
Put key, version #, value Writes a key with the specified value and version #.
GetCost key, version # Returns an integer cost to access the specified key with the version #.
GetVersionRange key, version # Returns a range of version #s within which a version of a key is valid.

Table 1. Example Key-Value StaleStore.

term ‘snapshot’ to define a consistent view of the data store
from the viewpoint of the storage at a particular timestamp.

• Timestamped writes: First, writes to the StaleStore are
accompanied by a monotonically increasing timestamp.
This version number is global across all writes to the
StaleStore; for example, for a key-value store, each put
operation must have a non-decreasing timestamp, regard-
less of which key-value pair it touches.

• Snapshot reads: Second, the application should be able
to read from a consistent, potentially stale snapshot corre-
sponding to a timestamp. Read APIs are augmented with
a timestamp parameter. A read operation at a timestamp
T reflects all writes with a lower or equal timestamp. For
example, for a key-value store, if a particular key has
been updated by three puts at timestamps T7, T33 and T56
respectively, a get operation at timestamp T100 will return
the value inserted by the put at T56, which reflects the
latest update at timestamp T100.

• Cost estimation: Third, the application should be able to
query the cost of issuing a particular read operation at a
snapshot. This cost is an arbitrary integer value that may
not correspond to real-world metrics such as latency or
throughput; all we require is that two cost estimates from
the same StaleStore can be compared.

• Version exploration: Finally, the application should be
able to determine – having read a particular version of
an item – what range of timestamps that version is valid
for. For example, if the application reads an item X at
timestamp T7, and that item does not change next until
timestamp T33, the application can optimize cost query-
ing operations with this information, or read other items
at any timestamp in between and still obtain a consistent
snapshot across items.

Table 1 shows an example API for a key-value StaleStore.
It provides an API for timestamped writes (Put), snapshot
reads (Get), cost estimation (GetCost), and version explo-
ration (GetVersionRange).

Why timestamps instead of consistency guarantees? Mak-
ing the single-node store aware of individual guarantees
(such as read-my-writes or monotonic reads consistency)
is challenging; these guarantees can be application-specific
and refer to application-level entities (e.g., the session con-
sistency guarantee requires a notion of an application-level

session started by a specific client). In contrast, timestamps
are compact, simple and sufficient representations of con-
sistency requirements, and are used by a wide range of sys-
tems to provide weak consistency in a distributed setting.
The higher layer simply tags every read and write with a
global timestamp.

What about concurrency control? One approach to im-
plementing the above API in a real system involves guard-
ing all data with a single, coarse lock. In this case, it’s sim-
ple for application logic to ensure that writes are always in
non-decreasing timestamp order, and that reads reflect writes
with prior timestamps. In practice, however, the application
can use fine-grained locking to issue requests in parallel,
while providing the same semantics as a single lock. For ex-
ample, in a key-value store, puts to different keys can pro-
ceed in parallel, while a get on a key has to be ordered af-
ter any puts to that key with a lower timestamp. We expect
the application to implement concurrency control above the
StaleStore API (in much the same way a filesystem imple-
ments locking above a block store API, or a key-value store
implements locking above a filesystem API), while ensuring
that the semantics of the system are as if a single lock guards
all data.

3.2 Which layer should be a StaleStore?
The API exposed by an individual server within a cloud
storage service to external clients typically mirrors the API
of the cloud storage service. For example, a storage service
might expose a key-value API to applications allowing them
to put and get key-value pairs; each individual server exposes
the same API to client-side logic used by the application to
access the service. We call this the public-facing API.

Internally, each server runs a process (the application
from the StaleStore’s perspective) that implements the
public-facing API over some internal, single-server storage
API; we call this the internal API. The internal API could be
provided by a filesystem like ext3, an embedded key-value
store like LevelDB or RocksDB, a single block store such as
Storage Spaces. These are the internal APIs that we propose
augmenting to support consistency/performance trade-offs,
as described above. Each of these internal subsystems could
be a multi-versioned StaleStore, allowing the application
to request older versions from them in exchange for better
performance. Alternatively, the application could be imple-
mented over one or more unmodified, single-versioned stor-



age subsystems, and itself act as an application-level Stale-
Store, managing older versions and accessing the fastest one.
Below, we discuss the implications of each option:

Application-level StaleStore: In this option, the
application-level storage system manages and maintains
versions across unmodified single-version stores (filesys-
tems, key-value stores, block devices), with no support
from the underlying local storage stack. This approach has
one significant benefit: the application is aware of the con-
sistency guarantee required (or equivalently, of high-level
constructs such as timestamps), and knows which versions
will satisfy the read. It also has a significant drawback: the
application is a user-space process that typically has little
visibility or control over the location of data on physical
devices. Multiple layers of indirection – in the form of
logs, read caches and write caches – can exist between the
application and raw hardware. While the application can
explicitly maintain versions over a logical address space (a
file or a block device), it cannot predict access latencies to
individual addresses on each address space.

Filesystem / embedded key-value StaleStore: In this
option, the application stores all its data in a filesystem
or embedded key-value StaleStore. An important benefit of
such an approach is generality and reusability: a filesystem
StaleStore can be reused by multiple cloud storage systems.
On the flip side, it itself operates over a logical address
space – a block device – and has little visibility into where
blocks are mapped, making it difficult to estimate the cost
of reads to particular versions. This is particularly true with
the advent of ‘smart’ block layers in hardware (e.g. SSDs)
and software (e.g. Microsoft’s Storage Spaces), which are
sophisticated, multi-device systems in themselves. However,
certain types of StaleStores can only be implemented at the
filesystem or key-value store level; one example is scenario
S6 from Section 2, in which a key-value store combines fine-
grained logging with a block-grain buffer cache over a block
address space with relatively uniform access latencies.

Block-level StaleStore: The third option is for a smart
block layer to manage, maintain, and expose versions. The
block layer has detailed information on where each block
in its address space lives, and can provide accurate access
latency estimates. Further, the block device shares the ad-
vantage of the filesystem: implementing tunable consistency
within the block device allows new high-level storage sys-
tems – such as graph stores, new types of filesystems, table
stores, databases, etc. – to easily support consistency/per-
formance trade-offs without reimplementing the required
mechanisms. We now describe the design and implementa-
tion of a block-level StaleStore called Yogurt.

4. Yogurt Design
Yogurt is a block-level StaleStore. It exposes a simple,
block-level StaleStore API (shown in Table 2) that supports
timestamped writes, reads and cost estimation. This API is

necessary and sufficient for adding StaleStore functionality
to a block store; it is analogous to the example key-value
StaleStore API shown previously.

Building a block-level StaleStore poses some unique
challenges. Applications might prefer to use the standard
POSIX-style API for reads and writes to minimize changes
to code, and also to use the existing, highly optimized I/O
paths from user-space to the block storage driver. Also sup-
porting application-level data abstractions, such as files and
key-value pairs, necessitates multiple block accesses. Sup-
porting these require some deviation from the basic Stale-
Store API. Specifically, Yogurt provides an alternative wrap-
per API where applications can specify timestamp via ex-
plicit control calls (implemented via IOCTLs) and follow
those up with POSIX read/write calls.

4.1 Block-level StaleStore API
The Yogurt API is simple and matches the generic charac-
teristics of a StaleStore API described in Section 3. Read-
Version(block addr, version) reads a block corresponding to
the version number (specifically, the last written block with
a timestamp lower than the supplied version number), and
WriteVersion(block addr, version, data) writes a block data
with the given version number. It is identical to accessing a
simple block store, but with an additional version number to
read and write the data.

GetCost(block addr, version) is the cost estimation API.
The versioned block store computes the integer value to re-
turn which can be compared against other GetCost calls’ re-
sults. The smaller the number, the smaller the estimated cost
to access it. Depending on the underlying storage settings
this number can be configured differently and more details
will be presented in Section 5.

GetVersionRange(block addr, version) returns a lower
and upper bounds of snapshots that contains the specified
block intact. An identical block of data can be part of multi-
ple snapshots. This API returns the version number when the
block data was last written before the given version number
and the version number when the block data is overwritten
after the given version number.

4.2 Wrapper APIs
As mentioned previously, a standard StaleStore API – con-
sisting of timestamp-augmented versions of the original calls
– is problematic for a block store, since it precludes the use
of the highly optimized POSIX calls. A second issue for ap-
plications is the granularity mismatch between the applica-
tion and the block store. Application-level consistency is de-
fined at a grain that is either smaller (e.g. small key-value
pairs) or larger (e.g. large files) than a single block. In ad-
dition, a single access to an application-level construct like
a key-value pair or a file often requires multiple accesses at
the block level (e.g., one access to look up a key-value in-
dex or a filesystem inode; a second access to read the data).
If these multiple writes are sent to the StaleStore with dif-



StaleStore
APIs

Parameters Description

ReadVersion Block address, version #. Reads a block corresponding to the version #.
WriteVersion Block address, version #,

data.
Writes a block with the specified version #.

GetCost Block address, version #. Returns an integer cost to access the specified block with the
version #.

GetVersionRange Block address, version #. Returns the snapshot version range where the block data is intact.

Wrapper APIs Parameters Description
POSIX APIs Does basic block I/Os such as read, write, seek, etc.
OpenSnapshot Version # Opens snapshot.
CloseSnapshot Closes snapshot and flushes writes.

Table 2. Yogurt APIs

ferent timestamps, the application could potentially access
inconsistent snapshots reflecting one write but not the other
(e.g., it might see the inode write but not the subsequent data
write). Required is a wrapper API that allows applications to
use the POSIX calls as well as ensure that inconsistent states
of the store cannot be seen.

The answer to both these questions lies in a wrapper API
that exposes OpenSnapshot and CloseSnapshot calls. Open-
Snapshot(version) opens a snapshot with the specified ver-
sion number. If the version number is invalid, the operation
will fail. The application that opened a snapshot can read one
or more blocks within the snapshot using the POSIX read
APIs until it closes the snapshot by calling CloseSnapshot().

If the snapshot accessed by the OpenSnapshot(version)
call is from the past, one cannot directly write new data
onto it. To write data, the application supplies a timestamp
to OpenSnapshot() greater than any the StaleStore has seen
before; this opens a writeable snapshot. The application can
then write multiple blocks within the snapshot, and then call
CloseSnapshot to flush the writes out to the store.

Note that the OpenSnapshot/CloseSnapshot wrapper
calls do not provide a full transactional API; they do not han-
dle concurrency control or transactional isolation; the appli-
cation has to implement its own locking above the wrapper
API. However, these calls do provide failure atomicity over
the basic StaleStore API.

Under the hood, OpenSnapshot simply sets the timestamp
to be used for versioned reads and writes. Reads within the
snapshot execute via the ReadVersion call in the StaleStore
API; CloseSnapshot flushes writes to the underlying store
using the WriteVersion call.

4.3 Versioned storage design
Yogurt implements the block-level StaleStore API over a
number of raw block devices, handling I/O requests to multi-
versioned data and offering cost estimates for reads. The ver-
sioned block store in Yogurt is patterned after the Gecko [16]
system (see S4 in Section 2), which chains a log across mul-

tiple devices such that new writes proceed to the tail drive
while reads can be served by any drive in the chain. Yogurt
maintains a multi-version index over this chained log that
maps each logical block address and version number pair to
a physical block address on a drive in the chain (in contrast
to Gecko, which does not provide multi-version access).

The wrapper layer makes sure that a block is never over-
written with the same version number and a set of writes
corresponding to a new snapshot is not exposed to applica-
tions other than the one issuing the writes until all writes
are persisted in the versioned block store. When WriteVer-
sion is called, the versioned block store updates the multi-
version index and appends new block data to the log. Simi-
larly, ReadVersion simply returns the data corresponding to
the address and version pair.

Because the versioned block store sits right on top of
block devices, it knows the block device types, character-
istics, and how busy each device is. Based on the physical
location of each versioned block data, the versioned block
store can estimate the cost for accessing a particular ver-
sion of the block. When GetCost API is invoked, the multi-
version index is looked up to figure out the physical location
of the data, and the access cost is computed based on the
storage media speed and the number of queued requests.

5. Implementation
Yogurt is implemented as a device mapper, which is a Linux
kernel module similar to software RAID and LVM. The
wrapper and StaleStore APIs other than the POSIX APIs are
implemented as IOCTL calls and kernel function calls.

5.1 Snapshot Access and Read Mapping
Since modern applications are highly concurrent and serve
multiple users, Yogurt should be able to service multiple
snapshots to one or many applications. To do this, Yogurt
identifies its users using pid, which is distinctively given to
each thread. When a thread calls OpenSnapshot, all read
requests from the thread are served from the opened snap-



shot until the thread calls CloseSnapshot. Once a thread is
mapped with a snapshot, each read is tagged with the snap-
shot number and issued via the ReadVersion API.

Figure 8 shows a logical view of a multi-version index
and how a snapshot is constituted. The x-axis is the logical
block address and the y-axis is the snapshot version number.
Each entry shows a physical block address and a version
number corresponding to the logical address. The entries
in the same row are the blocks that were written when the
snapshot was created. Thus, a snapshot consists of the latest
data blocks with version numbers less than or equal to the
snapshot’s version number.

When the application wishes to access an application-
level data item with a certain consistency level, it translates
that to a lowest acceptable version number, which we call
Vlow. It then uses the latest snapshot version as Vup. Once the
application knows the upper and lower bounds Vup and Vlow,
it can issue multiple GetCost queries within that range. We
leave the querying strategy to the application; however, one
simple strategy is to assign a query budget Q, and then issue
Q GetCost requests to a number of versions Vquery that are
uniformly selected between Vup and Vlow:

Vquery =Vlow + b((Vup−Vlow)/(Q−1))×nc, (1)

where {n ∈ Z|0≤ n≤ Q}. For example, for upper bound 9,
lower bound 5, and querying budget 3, get cost is issued to
versions 5, 7, and 9. Depending on the returned costs, the
application reads the cheapest version and updates Vlow, if
necessary. If the returned costs are the same for different
versions, the application prefers older versions to keep the
query range large.

Here, notice that if multiple blocks need to be accessed to
read an object (e.g. a file that spans multiple data blocks), the
blocks accessed after a block become dependent on the pre-
viously accessed block. For example, if an application reads
a metadata block, the data block locations are valid only for
the snapshots where the metadata block is valid. Say Vlow
and Vup were initially set to 0 and 10, respectively by a read
semantic and the application read version 1 of logical block
2 in Figure 8. Then Vlow and Vup becomes 1 and 5, respec-
tively, which is the range the read block is valid. If version
3 of logical block 7 is read next, the version range becomes
Vlow = 3 and Vup = 5, which is the common range for the two
blocks. Similarly, once the application opens a snapshot and
reads a block, GetVersionRange should be called to update
the common Vlow and Vup range while reading the blocks.

5.2 Data Placement
To provide as many read options with different access costs
as possible, it can be helpful for Yogurt to save different ver-
sions of a same block to different physical storage media.
Yogurt uses two data layers to do this: the lower layer con-
sists of the chained log with multiple disks and/or SSDs, and
the higher layer is built as a memory cache over the chained
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Figure 8. Logical illustration of multi-version index and
snapshots

log. The memory cache is a LRU based read or read/write
cache, where the data written to or read from the bottom
layer is cached. When the cache acts as a read/write cache,
the data writes through the cache for durability. Perfectly
distributing different versions to different block devices is
doable in the lower layer, but it can make the versioned block
store design complicated and can cause data skew to certain
block devices depending on the workload. Instead, the ver-
sioned block store uses a simpler approach: data is logged
using small segments to each block device in round robin
(e.g. log 16 MB segment to disk 0, log the next 16MB to
disk 1, log the next 16MB to disk 2, and then back to disk
0). This results in RAID-0 like throughput behavior, by en-
abling independent access to each block device.

5.3 Read Cost Estimation
Based on the physical storage layer described in the previous
subsection, Yogurt returns two-tiered estimated cost. For all
GetCost calls, the versioned block store first looks up the
memory cache. If the searching data block is inside the
memory cache, it is always faster to read it from the memory
than from either disk or SSD. To indicate this, the cost is
returned as a negative value.

If the data block is not in the cache, the cost reflects the
number of queued I/Os of the block device containing the
block. The versioned block store can trace this using sim-
ple counters. For disks and SSDs, precise cost estimation is
difficult because the internal states of the block devices are
not exposed. Still, there are several known facts that can be
applied for estimating the cost: 1) all writes within Yogurt
are sequential log appends; 2) mixing random and sequen-
tial I/Os within disks results in overall bad performance;
3) mixing reads and writes can penalize read operations in
SSDs; and 4) random read latencies of SSDs are orders of
magnitude faster than those of disks. Since data blocks are
read from a log, we can assume most reads will be accessing
physical blocks randomly, and from 1), 2), and 3), separating
reads from writes becomes important. So we add more cost



to block devices with queued writes and add small cost for
queued reads. From 4) we make the cost of reading a disk an
order of magnitude more expensive than reading a SSD.

To summarize, there is no cost difference among cached
blocks, and cached blocks are the cheapest. SSDs are pre-
ferred over disks most of the time, unless there is an order
of magnitude more I/Os queued on SSDs. Queued writes are
more expensive than reads. Costs are computed as follows:

CCache =−1 (2)
CSSD =Crd ssd×Nr +Cwr ssd×Nw (3)

CDisk =Crd disk×Nr +Cwr disk×Nw (4)

where the C variables are the costs of reading from or writing
to SSD or disk, and the N variables are the number of queued
reads and writes.

5.4 A Key-Value Store Example
We describe an example of a key-value store implementa-
tion to demonstrate how the Yogurt APIs can be used. The
key-value store returns the fastest value of the key while sat-
isfying the consistency constraints of each client.

The key-value store works in the following steps: 1)
When a client connects to the key-value store, a session
is created for the client and the latest snapshot number of
the connected server is used to set up Vlow values for the
key-value pairs depending on the consistency semantics. 2)
When the client issues a read to a key-value pair, Vup is set
to the latest snapshot number of the server and GetCost calls
are issued to different versions of the metadata block of the
key. 3) Based on the returned cost of different versions of
the metadata block, the key-value store calls OpenSnapshot
to read the cheapest version of the block. 4) After the read,
GetVersionRange is called and Vlow and Vup are updated. 5)
Next, the key-value store reads data blocks one by one by
calling GetCost to versions between Vlow and Vup and go-
ing through steps 3) to 4) repeatedly. 6) When the value of
the key is completely read, CloseSnapshot is called. 7) Fi-
nally, depending on the consistency semantics, Vlow and Vup
are updated for future reads (e.g. under monotonic-reads, the
version of the key-value pair that has been read is recorded in
Vlow and later when the client issues another read, the latest
available snapshot number in the server becomes Vup).

As shown in the example, it is the responsibility of the ap-
plication developer to wrap around the access to a single data
object using OpenSnapshot and CloseSnapshot. In addition,
OpenSnapshot should be repeatedly called within Vlow and
Vup range to read multiple blocks so that a data object that
spans multiple blocks are read from a consistent snapshot.

6. Evaluation
To evaluate the benefit of Yogurt, we implemented a dis-
tributed storage service patterned on Pileus [19], where a
client accesses a primary server and a secondary server. The

primary server always has the latest data and is far away;
the secondary server can be stale but is closer to the client.
We tested against two variants of this system: one where the
distributed service exposed a block API (matching the block
store abstraction provided by Yogurt), and a second where it
exposed a key-value service to clients. We call these Pileus-
Block and Pileus-KV, respectively, and the latter follows the
implementation of the example key-value store in the previ-
ous section.

The hardware configuration we use under Yogurt is three
disks and 256MB memory cache. Data is logged to three
disks in round robin in 1GB segments, using a design simi-
lar to Gecko’s chain logging with smaller segment size. The
memory cache can be enabled or disabled as will be de-
scribed in each experiment.

Throughout the evaluation we aim to answer the follow-
ing questions:

• What is the performance gain we can get by accessing
stale data?

• Is there any overhead for accessing older versions?
• How well do real applications run on Yogurt?

6.1 Pileus-like Block Store
First, we measure the base performance of Yogurt when it
is used with a distributed block store, comparing accessing
older versions versus accessing only the latest versions. We
compare Yogurt against two baseline settings, where the
latest versions can be interpreted in different ways: 1) we
compare against accessing the latest version within the local
server, and 2) against accessing a remote primary server
where the globally latest versions reside. We emulate the
network latency of accessing the primary server as if it is
located across the continental US from the client, delaying
the response by 100ms.

For this evaluation we use two different workloads, uni-
form random and zipf workload that access 256K blocks.
In the local server, we run a thread that aggressively writes
a stream of data coming from the primary node and mea-
sured the performance from 8 threads that are reading and
writing data in 9 to 1 ratio. The threads run with read-my-
writes (RMW) or monotonic reads (MR) consistency guar-
antees and we start the threads after making N versions of
data available to them. Figure 9 shows the average read la-
tency of 3 runs.

For all cases, accessing the primary server takes the
longest as the added network latency is relatively huge and
then comes accessing the latest version in the local storage.
The latest data in the local server is mostly found in the disk
that is writing data and most requests tend to concentrate
on this disk. However, Yogurt can find alternative versions
from different disks. The latency quickly drops to 20-25%
of accessing the latest version in local storage as the Get-
Cost calls enable faster data retrievals. Since there are three
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Figure 9. Performance of Yogurt under synthetic workloads.

disks the best performance is found after being able to ac-
cess three or more older versions. Monotonic reads seman-
tics show slightly better performance than read-my-writes
semantics because writes from the threads that use read-my-
writes limit the version range to explore before reading a
data that has been written by the thread. Still, being able to
explore staleness of one update can provide over 50% la-
tency reduction.

Figures 9 (c) and (d) show the cases with memory cache.
Although the overall performance of the baseline in (c) and
(d) is comparable or better than that of the cases without
memory cache (Figures 9 (a) and (b)), Yogurt can still return
data quicker than the baselines. When the cache is missed
Yogurt can bring quicker versions as shown with the case
without the cache (Figure 9 (a) and (b)). Also if a certain
version is in the cache (it can be an older version that has
been read) Yogurt can reuse the data with better efficiency.
For this reason zipf workload that has skewed data access
can immediately get large performance gain (Figure 9-(d)).
This result also shows that Yogurt can take advantage of
heterogeneous storage media efficiently.

6.2 GetCost Overhead
To access older versions from Yogurt, applications call Get-
Cost before every read to find out the lowest cost version.
Comparing the cost retrieved from Yogurt is trivial as it is
a simple O(N) comparison of numbers. However, GetCost

 0

 1

 2

 3

 4

 5

 6

 7

32B
(3)

64B
(7)

128B
(15)

256B
(31)

512B
(63)

1024B
(127)

A
vg

 la
te

nc
y 

(u
s)

Query size (# of versions)

Figure 10. GetCost overhead and query size.

function call crosses the user space and kernel space bound-
ary and involves copying information which can incur addi-
tional latencies.

Figure 10 shows the GetCost latency of differently sized
queries. Larger query size means asking for the cost of larger
number of older versions. The larger the query size, the
greater the GetCost latency. However, considering the read
latency of a disk or a SSD which can be tens of microseconds
to hundreds of milliseconds, the GetCost latency in the fig-
ure is very small. All our performance related experiments
use 64B queries and results show that we can get far more
latency improvements than the 1.4 microsecond overhead.
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6.3 Pileus-like Key-Value Store
Pileus-KV uses a persistent hashtable over the Yogurt block
address space in order to store variable-sized key-value
pairs. We ran YCSB workload A which is composed of
50% write and 50% read on the key-value store, choosing
keys according to a zipf distribution, and measured the per-
formance. The values of the keys can be partially updated
when only part of the value changes. In the experiment, the
value size is varied from 4KB to 20KB, which is equivalent
to 1 to 5 data blocks. To read or write a key-value pair at least
one additional metadata block must be accessed to locate the
block that is storing the key. We evaluate Yogurt’s capability
to access stale data that spans multiple blocks using GetVer-
sionRange API with GetCost calls.

We used the same server configurations as for the Pileus-
like block store and used the memory cache. There are 16
threads accessing the key-value store and a stream of in-
coming writes from the primary. Figure 11 shows the av-
erage read latency. As the value size grows to span multi-
ple blocks, Yogurt can provide multiple options for selecting
each block. The gap between accessing the latest block from
the local storage and accessing older versions grows as the
value size gets larger. The key-value store is querying costs
every time before it reads, so the overall approach is a simple
greedy selection. More sophisticated selection schemes can
be proposed to further improve the performance, but the fig-
ure shows that for both read-my-writes and monotonic reads
semantics greedy selection can already lead to better perfor-
mance than the baselines.

7. Related Work
The idea of trading off consistency – defined as data fresh-
ness – for performance or availability in a distributed system
has a rich history. Today, cloud services ranging from re-
search prototypes such as Pileus [19] and production cloud
services such as Amazon SimpleDB offer variable consis-
tency levels.

A number of storage systems are multi-versioned
for functionality rather than performance. These include
WAFL [8] and other filesystems [3, 12], as well as block

stores [5, 14]. Other systems have explored redundancy for
better performance [23] and reliability [13]. To the best of
our knowledge, none of these systems provide a perfor-
mance vs. staleness trade-off.

Yogurt fits into a larger body of work focused on chang-
ing or augmenting the block storage and its APIs [2, 6, 11,
17, 20, 21, 24] to either simplify applications or improve
performance by pushing functionality down the stack.

8. Conclusion
In this paper, we repurposed a well-known distributed sys-
tems principle within the context of a single server: storage
systems should expose older versions to applications for bet-
ter performance. This principle is increasingly relevant as we
move towards a post-disk era of storage systems that are of-
ten internally multi-versioned and multi-device. Today, dis-
tributed storage services in the cloud can benefit from this
principle by pushing relaxed consistency requirements (ne-
gotiated between the client and the service) down the stack
to the storage subsystem on each server. In the future, we
believe that new applications will emerge on a single ma-
chine that can work with weaker consistency guarantees in
exchange for better performance.
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