
Cloud FPGA

EENG 428
ENAS 968

bit.ly/cloudfpga

Share:
bit.ly/cloudfpga

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 2

Lecture: Logic Level Modeling

Prof. Jakub Szefer
Dept. of Electrical Engineering, Yale University

EENG 428 / ENAS 968
Cloud FPGA

Share:
bit.ly/cloudfpga

Logic Synthesis

This lecture is mostly based on contents of Chapter 6, from “The Verilog
Hardware Description Language” book [1], 5th edition. Example figures and
(modified) code are from the textbook unless otherwise specified.

Topics covered:
• Logic gates and nets
• Four logic level values
• Continuous assignment
• Logic delay modeling
• Specifying time units

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 3

Share:
bit.ly/cloudfpga

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 4

Logic Level Modeling

Share:
bit.ly/cloudfpga

Logic Level Modeling

• Behavioral modeling focuses on describing behavior and functionality of a circuit
• Behavioral code is written almost as a software-like function

• Logic level modeling is used to model the logical structure of a design
• Specify ports (inputs and outputs)
• Any submodule instances
• Connection between the submodules
• Logical functions

• Levels of logic modeling
1) Gate level – describe design in terms of interconnection of logical gates

• Use gate-level primitives
2) Continuous assignment statements – describe designs using Boolean algebra-like expressions

• Use assign statements
3) Transistor switch level – describe at level of MOS and CMOS transistors

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 5

Note at the gate level, the actual
implementation in FPGA will not use
exactly the gates used in Verilog – all
code is compiled to use Look-Up
Tables (LUTs) in the FPGAs

FPGA and ASIC vendors
provide modules such as
LUT, DFF, etc. to let users
exactly specify the hardware
that will be implemented

Share:
bit.ly/cloudfpga

Logic Gates and Nets

• Describing and modeling design at the logic level can be done using Verilog’s built-in logic
gate and switch primitives:

• The gates (and switch level primitives) can be interconnected using nets
• A net is a Verilog type, pretty much a representation of a physical wire
• nets do not store values or charges, except a tirreg type of a net

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 6

Used for logic-level
modeling

Used for transistor-
level modeling

Share:
bit.ly/cloudfpga

Logic Gates and Nets

• Textbook example of full adder module
• Each gate is interconnected using nets
• Inputs and outputs are wire nets by default
• Undefined nets will be made into wires by default

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 7

x2 is defined explicitly in the code

Undefined nets become 1-
bit wires by defaultCommon problem is undefined wires that become 1-bit

wires by default and cause logic to work incorrectly!

Can use `default_nettype none to disable
automatic definition of wire nets

Share:
bit.ly/cloudfpga

Logic Gate Instance Options

Gates (and modules, see later slides) can be instantiated with a number of options

• Instance names – are used in hierarchical design,
a good practice is to assign meaningful and unique
instance names to all modules and gates

• Gate delay – is used to quantify the number of time
units form when any input changes to when output
changes, this is the propagation delay

• Drive (and charge) strength – used for modeling physical behavior of wires
• The drive strengths are: supply, strong, pull, weak, and highz (all nets except trireg)
• The charge strengths are: large, medium and small strengths (for trireg only)
• Higher drive strength can supply the needed current faster when switching

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 8

Strength and delay are not used
for writing code synthesized to
FPGAs (and ASICs)

Drive strength details from:
http://verilog.renerta.com/source/vrg00047.htm

Share:
bit.ly/cloudfpga

Four Logic Level Values

• The values that may be driven onto a net are:
0 – a logic zero, or FALSE condition
1 – a logic one, or TRUE condition
x – an unknown logic value (any of 0, 1, or in a state of change)
z – a high-impedance condition

• Gate truth tables with respect to the possible logic levels (see textbook’s Appendix D):

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 9

L indicates 0 or z; H indicates 1 or z

Share:
bit.ly/cloudfpga

Different net types

• nets are used to model electrical connections
• nets store no charges and are just a connection
• Except trireg that models wires as capacitors that store charge

• Many net types are supported in Verilog:
• wire, tri, tri1, supply0, wand, triand, tri0, supply1, wor, and trior

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 10

Main type used for any
synthesizable code

Share:
bit.ly/cloudfpga

Logic Level Modeling Example

• Textbook of Hamming encoder and decoder
and a simple testbench

• Hamming codes can be used to detect
and correct errors in transmitted data

• Example uses code that can correct 1 error

• Example test module:

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 11

Share:
bit.ly/cloudfpga

Logic Level Modeling Example

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 12

Share:
bit.ly/cloudfpga

Logic Level Modeling Example

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 13

Share:
bit.ly/cloudfpga

Logic Level Modeling Example

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 14

Share:
bit.ly/cloudfpga

Continuous Assignment

• A different way to describe logic is using assign continuous assignment statements

• Continuous assignment can specify delays

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 15

Boolean algebra-like expression
for each of two assign statements

Functions,
but not tasks,
can be used
in assign
statements

Use default case
to capture
possible x on
the inputs (not
needed for
synthesizable
code, no x)

Add up delays of
any wires and
assigns when
computing
actual delay

Share:
bit.ly/cloudfpga

Continuous Assignment

• Continuous assignment can be also used with inouts
to specify high-impedance output

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 16

Use inout to model
a shared data bus
where master can
drive the bus (writes)
or reads the bus
(reads)

Assign output to high-
impedance when not
sending data from memory

Share:
bit.ly/cloudfpga

Mixing Behavioral and Structural Description

• Most of Verilog code written uses both structural and behavioral descriptions mixed
together to describe the design:

• Use structural for module interconnection,
gate-level modeling of certain modules
that need specific gate-level implementation

• Use behavioral for describing modules
where specific hardware implementation
is less important

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 17

Note again, that even with gate-level specification, actual
hardware will be different (e.g. using LUTs on FPGAs)

Structural description

Behavioral description

Share:
bit.ly/cloudfpga

Logic Delay Modeling

• Gate and net specification can include information about delays
• Gates can has specified propagation delay for transition to 1, transition to 0, and transition to z,

resulting in up to three delay values used with # operator:

#(d1, d2, d3)

• Delays are used by simulators
to determine when to update the
values on output of the gates

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 18

Share:
bit.ly/cloudfpga

Minimum, Maximum, and Average Delays

• Verilog allows for three values to be specified for each of the rising, falling,
and turn-off delays

• A three-valued delay specification:

#(d1, d2, d3)

• Can be expanded to:

#(dl_min: dl_typ: dl_max, d2_min: d2_typ: d2_max, d3_min: d3_typ, d3_max))

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 19

Share:
bit.ly/cloudfpga

Logic Delay Modeling

Textbook example of modeling logic gate delays in a tri-state latch:

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 20

Share:
bit.ly/cloudfpga

Delays Across Modules

• Verilog allows for modeling delays across a whole module using the specify block
• source => destination = (delays) – specifies the delays, same order as for wires:

transition to 1, transition to 0
• (a, b *> c, d) = (delays) – combines multiple delay specifications into one: a to c, a

to d, b to c, and c to d

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 21

Share:
bit.ly/cloudfpga

Specifying Time Units

• Verilog simulator works in term of time units,
each # delay is in time units

• To assign specific time unit magnitude to delays use:
`timescale <time_unit> / <time_precision>

• Example:
`timescale 10 ns / 1 ns

• The precision is used to
quantify how fine-grained
the simulator keeps track of time

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 22

Share:
bit.ly/cloudfpga

References

1. Donald E. Thomas and Philip R. Moorby. " The Verilog Hardware Description Language, Fifth Edition.”
Springer. 2002

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 23

