
Cloud FPGA

EENG 428
ENAS 968

bit.ly/cloudfpga

Share:
bit.ly/cloudfpga

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 2

Lecture: Concurrent Processes

Prof. Jakub Szefer
Dept. of Electrical Engineering, Yale University

EENG 428 / ENAS 968
Cloud FPGA

Share:
bit.ly/cloudfpga

Logic Synthesis

This lecture is mostly based on contents of Chapter 4, from “The Verilog
Hardware Description Language” book [1], 5th edition. Example figures and
(modified) code are from the textbook unless otherwise specified.

Topics covered:
• Synchronization between concurrent processes
• Events
• The wait statement
• Producer-consumer examples
• The disable statements
• Parallel blocks with fork-join statements

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 3

Share:
bit.ly/cloudfpga

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 4

Concurrent Processes

Share:
bit.ly/cloudfpga

Concurrent Processes

• A process in an “abstraction of a controller, a thread of control that evokes the change of
values stored in the systems registers” [1]

• A digital system can be thought of as a set of communicating, concurrent processes that
pass information among themselves

• Each process contains state information → values eventually stored in hardware registers
• The state is modified based on the process’ inputs and current state
• A module contains one or more concurrent processes
• A system is typically made of one or more modules

• Each process effectively represents a state machine
• Combinatorial logic is effectively state machine with 0 states

• Example: if there two processes that have n and m states,
then a combined process would have in the worst
case n * m states

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 5

Recall that there can be module with no processes,
just structural connection between modules

Could describe a processor using one
process, but it would be very messy,

so we break it into multiple processes

Share:
bit.ly/cloudfpga

Synchronization Between Processes

• “When several processes exists in a system and information is to be passed among them,
we must synchronize the processes to make sure that correct information is being
passed” [1]

• Each process is asynchronous with respect to each other
• Can run on same or different clocks, but even if on same clock, one process does not know

what state the other process is in → need to explicitly synchronize

• A handshake protocol is needed to synchronize processes

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 6

Process A Process B
go

done

• Many different hand shake protocols exist
• Handshaking is used between modules as

well very often

Share:
bit.ly/cloudfpga

Events

• Event control statements in Verilog allow to take actions when an event happens

• Value change events
• The @ is used to specify value change events
• Value change events, watch for changes

in wires or registers
• Stop procedure evaluation until there is an event

• Positive edge, negative edge, or any value change
• If previous and new value are same, then no event is triggered

• Named events
• Named events, watch for changes

in events, not actual
wires or registers in the design

• Only really used for simulation
not to write real hardware

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 7

• posedge or negedge watch for
transition (0 → 1, 0 → x, or x → 1)
and (1 → 0, 1 → x, or x → 0)
respectively

• can OR many events to check of
any of them

• order of listing the events does
not matter

Declare
event

Trigger
event Event

change
detecti

on

Share:
bit.ly/cloudfpga

wait Statements

• “The wait statement is a concurrent process statement that waits for its conditional
expression to become TRUE” [1]

• Process evaluation stops until the statement becomes true
• The wait statement can be use, for example, to make a handshake protocol:

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 8

Verilog built-in
function to

generate random
numbers

Share:
bit.ly/cloudfpga

wait Statements vs. while Loops vs. Events

• The main difference between wait statements while loops:
• The wait statement stops a process evaluation
• The while loop keeps executing, does not stop process evaluation

• The loop does not let stop the process, can get stuck in the process (other processes don’t get
to be evaluated so no progress can be made

• The main difference between wait statements and events:
• Both check for situation or changed generated by other processes
• Events are edge triggered
• The wait statement is level triggered, once a wait is TRUE, it will stay so

• Need another wait statement that is triggered when condition is FALSE,
i.e. ! condition is TRUE

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 9

Share:
bit.ly/cloudfpga

Producer-Consumer Example

• Textbook example of synchronous bus protocol
• Master module controls rwLine and addrLine

• rwLine == 1 means write, else it’s a read
• addrLine specifies address

• The data line is driven by master for writes
and by the slave for reads

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 10

Values change
at the edge of

the clock

Share:
bit.ly/cloudfpga

Producer-Consumer Example

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 11

Macro defines

Read data
from file into

memory array

Module
parameter

Forever toggle
clock to

simulate a
periodic clock

Simulation output:

Explicit simulation finish

Share:
bit.ly/cloudfpga

Simple Processor Example

• Very simplified Mark-1 processor example
from the textbook

• Uses events instead of wait statements
• More similar to typical synthesizable

logic writing style

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 12

Each register
can only be

written in one
always block

Share:
bit.ly/cloudfpga

Disabling Named Blocks

• The disable statement can be used to break out of a loop statement
• The disable statement can also be used in concurrent processes

• Stop any named begin-end block
• Stop any functions or tasks called from the block
• Execution continues with the next statement following the end of the block
• If another process was triggered

by the stopped block, it will continue

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 13

Process A Process B
go

done

If Process A is
disabled, Process
B will continue
since the ’go’ was
already triggered

Share:
bit.ly/cloudfpga

Disabling Named Blocks Example

• Textbook example of disabling named blocks

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 14

Trigger disable
of main block

• Normally wait will get
activated once when reset is
TRUE

• Because of the disable, the
main will restart and
activate wait again

Share:
bit.ly/cloudfpga

Intra-Assignment Control and Timing Events

• Most of the time the timing or event
control is specified to occur before the action
or assignment occurs

• But can also have intra-assignment control
and timing

• Works for blocking and non-blocking assignments

• Not used to describe synthesizable logic
• Can be used for simulation

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 15

Share:
bit.ly/cloudfpga

Procedural Continuous Assignment

• Continuous assignment is typically done with
the assign statement

• Can use the assignment statements in procedural
specification

• Again, not used to synthesize real hardware because
of the # delays

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 16

Set the value

Revert to
value before
last assign

Share:
bit.ly/cloudfpga

Parallel Blocks with fork-joinStatements

• Each statement in the fork-join block is
a separate process that begins when control
is passed to the fork

• The join waits for all of the processes to complete
before continuing with the next statement beyond block

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 17

Share:
bit.ly/cloudfpga

References

1. Donald E. Thomas and Philip R. Moorby. " The Verilog Hardware Description Language, Fifth Edition.”
Springer. 2002

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 18

