Cloud FPGA

EENG 428
ENAS 968

bit.ly/cloudfpga

Lecture: Concurrent Processes

Prof. Jakub Szefer
Dept. of Electrical Engineering, Yale University

EENG 428 / ENAS 968
Cloud FPGA

@ @ @ Share: EENG 428 | ENAS 968 — Cloud FPGA 2
bit.ly/cloudfpga © Jakub Szefer, Fall 2019

Logic Synthesis e

This lecture is mostly based on contents of Chapter 4, from “The Verilog
Hardware Description Language” book [1], 51" edition. Example figures and
(modified) code are from the textbook unless otherwise specified.

Topics covered:

« Synchronization between concurrent processes

 Events

e The wait statement

* Producer-consumer examples
 The disable statements

 Parallel blocks with fork-join statements

[©Nelel

Share:
bit.ly/cloudfpga

EENG 428 /| ENAS 968 — Cloud FPGA
© Jakub Szefer, Fall 2019

Thomas & Moorby’s

The Verilog
Hardware
Description
Language

Fifth Edition

Concurrent Processes

@ @ @ Share: EENG 428 /| ENAS 968 — Cloud FPGA 4
bit.ly/cloudfpga © Jakub Szefer, Fall 2019

Concurrent Processes P —

« A process in an “abstraction of a controller, a thread of control that evokes the change of
values stored in the systems registers” [1]
A digital system can be thought of as a set of communicating, concurrent processes that
pass information among themselves
» Each process contains state information — values eventually stored in hardware registers
» The state is modified based on the process’ inputs and current state

« A module contains one or more concurrent processes Recall that there can be module with no processes,
e A system S typica”y made of one or more modules just structural connection between modules

« Each process effectively represents a state machine g .
. moauie computer;
« Combinatorial logic is effectively state machine with O states always P
. beai
« Example: if there two processes that have n and m states, “powerOnInitializations:
then a combined process would have in the worst ;orever
egin
case n * mstates fetchAndExecuteInstructions;
Could describe a processor using one end
process, but it would be very messy, = end
so we break it into multiple processes ~ |_éndmodule

@ @ @ Share: EENG 428 /| ENAS 968 — Cloud FPGA 5
bit.ly/cloudfpga © Jakub Szefer, Fall 2019

Synchronization Between Processes " greeeeeen -

« “When several processes exists in a system and information is to be passed among them,
we must synchronize the processes to make sure that correct information is being
passed” [1]

* Each process is asynchronous with respect to each other
« Can run on same or different clocks, but even if on same clock, one process does not know
what state the other process is in — need to explicitly synchronize

* A handshake protocol is needed to synchronize processes

Process A Process B
go
\ * Many different hand shake protocols exist
* Handshaking is used between modules as
well very often
done

@ @ @ Share: EENG 428 /| ENAS 968 — Cloud FPGA 6
bit.ly/cloudfpga © Jakub Szefer, Fall 2019

« Event control statements in Verilog allow to take actions when an event happens

« Value change events

* The @ is used to specify value change events
» Value change events, watch for changes

in wires or registers

» Stop procedure evaluation until there is an event
» Positive edge, negative edge, or any value change
* |If previous and new value are same, then no event is triggered

* Named events

» Named events, watch for changes

in events, not actual

wires or registers in the design
* Only really used for simulation
not to write real hardware

Share:
M bit.ly/cloudfpga

Declare
event

Trigger
event

iy
Ky

#50 —> ready;
end Event
endmodule change
detecti
on

(

);

output

event

always
begin
#

EENG 428 /| ENAS 968 — Cloud FPGA

module dEdgeFF
(output reg q,
input clock, data
);

always @(negedge clock)

g <= data;

endmodule

module numberGen

reg [15:2] number =
ready;
number = number + 1;

© Jakub Szefer, Fall 2019

endmodule

» posedge or negedge watch for
transition (0 - 1,0 - x, orx — 1)
and (1 - 0,1 — x,or x — 0)
respectively

* can OR many events to check of
any of them

» order of listing the events does
not matter

module fibNumCalc

(input [15:0] startingValue,
output reg [15:2] fibNum

);
reg [15:2] count, oldNum, temp;
always
begin

@ng. ready
count = startingValue;

// do some worK...

end

wait Statements 'prr—

* “The wait statementis a concurrent process statement that waits for its conditional

expression to become TRUE" [1]
* Process evaluation stops until the statement becomes true

 The wait statement can be use, for example, to make a handshake protocol:

module ProducerConsumer;

reg consReady, prodReady;

reg [7:0] dataInCopy, dataOut;
always // consumer process
begin

consReady = 1;

forever

begin

wait (prodReady)
dataInCopy = dataOut;

consReady = 0;
// do some worK...

wait (!prodReady)
consReady = 1;

end
end

Share:
M bit.ly/cloudfpga

prodReady
B
A ;

consReady

EENG 428 /| ENAS 968 — Cloud FPGA
© Jakub Szefer, Fall 2019

always // produce process
begin
prodReady = 0;

forever
begin

// do some work...

wait (consReady)
dataOut = $random;

Verilog built-in
function to
wait (!consReady) generate random

prodReady = 0; numbers

prodReady = 1;

end
end

endmodule

wait Statements vs. while Loops vs. Events

« The main difference between wait statements while loops:
 The wait statement stops a process evaluation

« The while loop keeps executing, does not stop process evaluation

» The loop does not let stop the process, can get stuck in the process (other processes don’t get
to be evaluated so no progress can be made

« The main difference between wait statements and events:
» Both check for situation or changed generated by other processes
» Events are edge triggered
 The wait statement is level triggered, once a wait is TRUE, it will stay so

* Need another wait statement that is triggered when condition is FALSE,
i.e. ! conditionis TRUE

@ @ @ Share: EENG 428 /| ENAS 968 — Cloud FPGA 9
bit.ly/cloudfpga © Jakub Szefer, Fall 2019

Producer-Consumer Example

« Textbook example of synchronous bus protocol

 Master module controls rwLine and addrLine
 rwkLine == 1 means write, else it's a read

» The data line is driven by master for writes

» addrLine specifies address

and by the slave for reads

©00

Share:
bit.ly/cloudfpga

clock

rwLine

addrLines l

Values change
at the edge of

the clock

a

dataLines

i

?

Write P Write

EENG 428 /| ENAS 968 — Cloud FPGA
© Jakub Szefer, Fall 2019

Read

rl Write

Read

10

Producer-Consumer Example

wo UL

rwLine

addrLines

dataLines

rw=x, data=
rw=0, data=
rw=0, data=
rw=0, data=
rw=0, data=
rw=1, data=
rw=1, data=
rw=0, data=
rw=0, data=
rw=0, data=
rw=0, data=

Write | Write Read

Write

Read

Simulation output:

x, addr= x at time
x, addr= 2 at time
29, addr= 2 at time
29, addr= 3 at time
28, addr= 3 at time
5, addr= 2 at time
7, addr= 3 at time
7, addr= 2 at time
5, addr= 2 at time
5, addr= 3 at time
7, addr= 3 at time

Share:
M bit.ly/cloudfpga

0

1

40

80

120
160
200
240
280

320
360

> Read
> Read

— Write
— Write

> Read
> Read

‘define
“define

4 Macro defines

module sbus;
parameter tClock =

reg clock;

reg [15:0] m [0:31];
reg [15:0] data

reg rwLine

reg [4:0] addressLines;
reg [15:0] datalLines;
initial

begin

i 4 parameter

Module

Read data
from file into
memory array

$readmemh ("memory.data", m);

clock = 0;

$monitor ("rw=%d, data=%d, addr=%d at time %d",

rwLine, datalLines, addressLines, $time);

end

always
#tClock clock != clock;

initial

begin
#
wiggleBusLines("® ,
wiggleBusLines (" ,
data = 5;
wiggleBusLines("® ,
data = 7;
wiggleBusLines("® ,
wiggleBusLines(® ,
wiggleBusLines("® ,

Forever toggle
clock to
simulate a
periodic clock

, data);
, data);

, data);
, data);

, data);
, data);

$finish;

end \ Explicit simulation finish

EENG 428 /| ENAS 968 — Cloud FPGA
© Jakub Szefer, Fall 2019

task wiggleBusLines
(input readWrite,

input [5:0] addr,
inout [] data
);
begin

rwLine <= readWrite;
if (readWrite)
begin
addressLines <= addr;
datalLines <= data;
end
else
begin
addressLines <= addr;
@ (negedge clock);
end
@ (negedge clock);
if (~readWrite)
data <= datalines;
end
endtask

always
begin
@ (negedge clock);
if (~rwLine)
begin
dataLines <= m[addressLines];
@ (negedge clock);
end
else
m[addressLines] <= datalLines;
end

endmodule

1"

Simple Processor Example

» Very simplified Mark-1 processor example reg | i signed n (0:1911;
from the textbook

» Uses events instead of wait statements
« More similar to typical synthesizable
logic writing style

©00

Share:
bit.ly/cloudfpga

module marklPipeStage;

reg [signed acc;
reg [15:0] ir
reg ck, skip;

always @ (posedge ck) // Fetch instructions

begin
if (skip)
pc <= pctemp;
ir <= mlpcl;
pc <= pC +
Each register end
can only be always @ (posedge ck) // Execute instructions
written in one begin
if (skip)
always block skip <=
else
case (ir[15:131])
: begin
pctemp <= m[ir[12:0]];
skip <=
end
: begin
pctemp <= pc + m[ir[12:0]];
skip <= 1;
end
: acc <= -m[ir[12:01];
: mlir[12:0]1] <= acc;
: acc <= acc — m[ir[12:0]1];
: if (acc < 0) begin
pctemp <= pc +
skip <=
end
endcase
end
endmodule
EENG 428 /| ENAS 968 — Cloud FPGA 12

© Jakub Szefer, Fall 2019

Disabling Named Blocks g

 The disable statement can be used to break out of a loop statement
 The disable statement can also be used in concurrent processes

« Stop any named begin-end block

« Stop any functions or tasks called from the block

» Execution continues with the next statement following the end of the block
« |If another process was triggered -

by the stopped block, it will continue - ProcessA Process B
go
\ If Process Ais
disabled, Process
B will continue
done since the 'go’ was
/ already triggered

@ @ @ Share: EENG 428 /| ENAS 968 — Cloud FPGA 13
bit.ly/cloudfpga © Jakub Szefer, Fall 2019

Disabling Named Blocks Example

« Textbook example of disabling named blocks

* Normally wait will get
activated once when resetis

TRUE

Because of the disable, the
main will restartand

activate wait again

©00

bit.ly/cloudfpga

EENG 428 /| ENAS 968 — Cloud FPGA
© Jakub Szefer, Fall 2019

module simpleTutorialWithRest

(input clock, reset,

);

output reg [7:0] y, x

initial

forever
begin
@(negedge reset)
disable main;
end

always
begin: main

wait (reset);

@(posedge clock)
X <= 0;

i=0;

while (i <= 10)

begin
@(posedge clock);
X <=X+Y;
i=1+1;

end

@(posedge clock);
if (x < 0)

y <= 0;
else

X <= 0;

end

endmodule

h

Trigger disable
of main block

14

Intra-Assignment Control and Timing Events

* Most of the time the timing or event
control is specified to occur before the action
or assignment occurs
« But can also have intra-assignment control
and timing
» Works for blocking and non-blocking assignments

* Not used to describe synthesizable logic
« Can be used for simulation

Share:
M bit.ly/cloudfpga

Statements using intra-
assignment constructs

Equivalent statements
without intra-assignments

a=#25b;

begin
bTemp = b;
#25 a = bTemp;

end

q = @(posedge w) r;

begin
rTemp =r;
@(posedge w)
q = rTemp;

end

w = repeat (2)
@(posedge clock) t;

begin
tTemp = t;
repeat (2)
@(posedge clock);
w = tTemp;
end

EENG 428 /| ENAS 968 — Cloud FPGA
© Jakub Szefer, Fall 2019

15

Procedural Continuous Assignment g

« Continuous assignment is typically done with

the assign statgment | module dFlop
« Can use the assignment statements in procedural (;:ggztp;:;eg' clear,

specification | input clock, d
o - i always

Again, not used to synthesize real hardware because o(clear, preset)

of the # delays beglf'm(' Lear)

1 :Clear
assign q = 0; 2 Set the value

else if (!preset)
#10 assign q = 1;

else _ Revertto
deassign Q; value before
end last assign
always
@(negedge clock)
q = #10 d;
endmodule

@ @ @ Share: EENG 428 /| ENAS 968 — Cloud FPGA 16
bit.ly/cloudfpga © Jakub Szefer, Fall 2019

Parallel Blocks with fork-join Statements

« Each statementin the fork-join block is
a separate process that begins when control

Is passed to the fork

* The join waits for all of the processes to complete
before continuing with the next statement beyond block

©00

Share:
bit.ly/cloudfpga

module microprocessor;

always
begin

resetSequece;
fork: mainWork

forever
fetchAndExecute Instructions;

@(posedge reset)
disable mainWork;

join
end

endmodule

EENG 428 /| ENAS 968 — Cloud FPGA
© Jakub Szefer, Fall 2019

module simpleTutorialWithRest
(input clock, reset,

output reg [7:0] y, x

);

reg [7:0] i;

always
fork: main

@(negedge reset)
disable main;

begin
wait (reset);

@(posedge clock)

X <= 0;
i=20;

while (i <= 10)
begin
@(posedge clock);
X <= X + Y;
i=1+1;
end
@(posedge clock);
if (x < 0)
y <= 0;
else
X <= 0;

end

join

17

endmodule

References ‘R

1. Donald E. Thomas and Philip R. Moorby. " The Verilog Hardware Description Language, Fifth Edition.”
Springer. 2002

@ @ @ Share: EENG 428 /| ENAS 968 — Cloud FPGA 18
bit.ly/cloudfpga © Jakub Szefer, Fall 2019

