
Cloud FPGA

EENG 428
ENAS 968

bit.ly/cloudfpga

Share:
bit.ly/cloudfpga

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 2

Lecture: Behavioral Modeling

Prof. Jakub Szefer
Dept. of Electrical Engineering, Yale University

EENG 428 / ENAS 968
Cloud FPGA

Share:
bit.ly/cloudfpga

Logic Synthesis

This lecture is mostly based on contents of Chapter 3, from “The Verilog
Hardware Description Language” book [1], 5th edition. Example figures and
(modified) code are from the textbook unless otherwise specified.

Topics covered:
• Blocking and non-blocking assignments
• Behavioral modeling with processes
• If-then-else, if-else-if, case statements
• Functions and tasks
• Structural view
• Rules of scope and hierarchical names

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 3

Share:
bit.ly/cloudfpga

Blocking and Non-Blocking Assignments

Foreshadowing of chapter 8:

• The <= operator is allowed anywhere the = is allowed in procedural assignment statements
• The non-blocking assignment operator cannot be used in a continuous assignment statement

• Don’t use in assign statements
• Don’t confuse with less-than-equal <=

• Going left-to-right in an expression, first <= is assignment, others are comparisons

• Non-blocking behavior, the <= does not block the process:
a <= b
c <= a // previous a <= b did not block process,

// so c <= a uses value of a before a became b

Style-guide:
• Use non-blocking in sequential logic, always @ (posedge clock)
• All others (combinatorial logic, functions, tasks) use blocking

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 4

Can use <= here,
just be careful of
the resulting logic

Using = here can possibly
lead to extra storage
elements being
synthesized, affecting
timing of circuit

Share:
bit.ly/cloudfpga

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 5

Behavioral Modeling and Processes

Share:
bit.ly/cloudfpga

Processes

• A process is described in Verilog using always statements and initial statements
• The always process continuously repeats itself
• The initial statement only runs once (at start of simulation, for example)
• There can be many such statements in a module, which logically execute concurrently

• A module can also have none, in which case it only described structure of logic (e.g. connections
between modules)

• The initial statements cannot be synthesized into hardware
• They are used for simulation to initialize values
• In synthesized hardware typically a ’reset’ signal

is used to initialize values
• For FPGAs, the tools usually let you

set initial value for a register
• For ASIC need to explicitly reset all

registers when system starts

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 6

Share:
bit.ly/cloudfpga

Execution Model of always and initial

• Within each process, the statements are evaluated serially, similar to a set of
C instructions

• When using blocking = values are assigned immediately and can be used in next statement
• When using non-blocking <= the values are assigned in parallel

• Event statements @, delay statements #, and wait statements cause
the evaluation of the process to be suspended until, respectively:

• Event occurs
• Number of time units has passed
• Condition becomes true

• Event statements continue when condition is met

• The events, time delay, or conditions becoming
true are triggers for statement evaluation to continue

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 7

Regardless, all
always and

initial work in
parallel, there is

no order of value
updates

The always will
continue to run
from beginning,

while the initial
stops when it

reaches the end

Share:
bit.ly/cloudfpga

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019

If-Then-Else and Other Features of Verilog

• If-then-else statements are
used in processes
to control the control flow

• Like C programs, based on the
conditions, do different things

8

Macros can be used to define
useful string substitutions

The wait statement causes
process evaluation to stop until

condition becomes TRUEThe go is example of
handshake signal, another

module can trigger go to begin
divide operation

The repeat is like a for loop
that executes exactly the

number of times specified by
the repeat value

Bit-select statements
• [high : low]
• [value]
• [start+ : range] = [start+range-1 : start]
• [start- : range] = [start : start-range+1]

All values are unsigned by
default, but can define signed
(2’s complement)

Arithmetic operators +, -, etc., will
do correct computation with
respect to signed / unsigned values

Same as:
quotient = (negDivisor != negDividend)

? –quotient : quotient;

Share:
bit.ly/cloudfpga

If-Then-Else Condition Tests

• The if-then-else can test values of wires are registers using the typical operators
• Greater then >, less than <, equal ==, not equal !=
• The unknown x or high-impedance z is considered FALSE
• Triple equal === or triple not-equal !== consider

unknown x or high-impedance z
• if (4'b110z === 4'b110z) evaluates to TRUE
• if (4'b110z == 4'b110z) evaluates to FALSE

• Triple equals cannot be synthesized to hardware,
as in hardware all values are either 0 or 1 (no x or z)

• The else statement is associated with the closest if statement

• Conditional tests can test conditions using typical operators
• Operators such as AND, OR, XOR, etc. (not just Boolean algebra operators)
• Bitwise operators compare each bit of the first operand to the corresponding

bit of the second operand, logical operators treat each operand as a single value
and compare the values

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 9

Please see textbook
Appendix G for formal
specification of Verilog.

if (expressionA)
d = e;
f = g;

is same as:

if (expressionA)
begin

d = e;
end

f = g;

but:

if (expressionA)
if (expressionB)

d = e;
else

f = g;

is same as:

if (expressionA)
begin

if (expressionB)
d = e;

else
f = g;

end

Share:
bit.ly/cloudfpga

Loops

Four different loop statements are available in Verilog:
• repeat (numTimes)
• for (initLoopCond; testExpression; updateLoopCond)
• while (someCondition)
• forever

The loops will not be actually created in hardware, they are just used to describe
the behavior of the system or module
• Will generate simple logic if each loop condition is independent and can execute in parallel
• May generate very complex logic if there are interdependencies between each loop iteration

Loops can be exited early using disable statement
• Similar to break statement in C

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 10

Expressions or test conditions for the
loop statements can use parameters, local

parameters, or macros

Use integer values or registers with
extra bits to avoid wrap-around when

updating test condition
Condition needs to be updated in loop body,

can’t use external conditions, e.g. module inputs

Share:
bit.ly/cloudfpga

Multi-Way Branching

• If-else-if statements and case selection statements allow for multi-way branching
• Example of code to emulate simplified Mark-1 processor

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 11

The ASCC (Mark-1) was built from switches,
relays, rotating shafts, and clutches. It used
765,000 electromechanical components and

hundreds of miles of wire in 1944.

The first transistor was invented in 1947.

Mark-1 information from Wikipedia

Multiple event
statements

Using
posedge will

create
sequential

logic

Combinatorial
logic

Multiple
control flows

based on
different if-
else-if tests

Share:
bit.ly/cloudfpga

Multi-Way Branching

• If-else-if statements and case selection statements allow for multi-way branching
• Example of code to emulate simplified Mark-1 processor

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 12

Multiple cases
can have save

operation

Already generation
sequential logic (because of
posedge), but it is good

style to still list default case

Different case statements exist:
• CASE specify don’t care as ? on left-hand side
• CASEX allows for both z and x values to be

treated as don’t cares when doing comparison
• CASEZ allows for z values to be treated as don’t

cares when doing comparisons

For logic to synthesize to hardware, there can be
no don’t cares x on right-hand side of assignments

Conditions are
checked in order,
similar to if-else-if

Share:
bit.ly/cloudfpga

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 13

Functions and Tasks

Share:
bit.ly/cloudfpga

Functions and Tasks

• Verilog provides functions and tasks as primitives similar to software functions
• They allow for the behavioral description of a module to be broken down into even more-

manageable parts
1. First, break design into module – hierarchical design
2. Second, use functions, tasks, macros, etc. in module – further break down the complexity

• Functions and tasks can be written for often-used behavioral sequences, write the description
once and then re-use many times

• Functions are simpler (less options) and can be used for synthesizing hardware
• Task are more complex, and mainly used for simulation

• Can’t synthesize to hardware, e.g., when delay is used in a task

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 14

Share:
bit.ly/cloudfpga

Comparison of Functions and Tasks

• Comparison table from
the textbook [1] shows the different
features of functions and tasks

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 15

Not re-entrant,
recursive calls to
functions and tasks
use same storage

Need to define as
automatic to allow
for recurrence

Non re-entrant have
static storage, re-
entrant have dynamic
storage, may not
synthesize to
hardware

Share:
bit.ly/cloudfpga

Tasks

• Tasks are very similar to functions,
but can set multiple outputs
and use timing (not shown in example)

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 16

inout is both input and output,
copy as input at beginning and
send as out at endTask inputs and

outputs

Behavioral
description of the
task’s operation

Same as acc <= acc * m [ir [12:0]];

Share:
bit.ly/cloudfpga

Functions

• Functions are simpler tasks,
useful for synthesizable code

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 17

Function inputs
and outputs

Behavioral
description of the
function’s operation

Output is same as
function name

Share:
bit.ly/cloudfpga

Constant Functions

• Constant functions are just functions, but inputs come from parameters or local
parameters and are not values of wires or registers

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 18

Use function to
compute size of wire

Share:
bit.ly/cloudfpga

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 19

Structural View, Rules of Scope, and Hierarchical Names

Share:
bit.ly/cloudfpga

Structural View

• Tasks and functions help to organize the behavioral models
• Modules help to build hierarchical designs

• All three help to design structure of the system
• Progressively can implement more detailed design
• Begin by using * for multiple
• Finish by writing gate-level description of the multiplier unit

• Behavioral modeling helps to get the design started more quickly

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 20

Share:
bit.ly/cloudfpga

Rules of Scope and Hierarchical Names

• Module names are known globally across the whole design in Verilog
• Each module instance requires a unique instance name

• Identifiers for modules, tasks, functions, and named begin-end blocks are allowed to be
forward referencing and thus may be used before they have been defined

• Forward referencing is not allowed with register and net accesses
• If you forget to declare a variable, or declare variable after it is used, synthesis tools may

automatically declare it as a wires – leading to errors about double declaration or conflicts

• Each entity in the design can be accessed through hierarchy of names
• Top entity is usually top
• Use dot . to specify hierarchy, e.g., top.abc.xyzmay mean module xyz inside abc inside top

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 21

Share:
bit.ly/cloudfpga

Example of Rules of Scope and Hierarchical Names

Textbook example of hierarchical names:

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 22

The disable keyword
is used to terminate
tasks, similar to

Share:
bit.ly/cloudfpga

References

1. Donald E. Thomas and Philip R. Moorby. " The Verilog Hardware Description Language, Fifth Edition.”
Springer. 2002

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 23

