
Cloud FPGA

EENG 428
ENAS 968

bit.ly/cloudfpga

Share:
bit.ly/cloudfpga

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 2

Lecture: Logic Synthesis

Prof. Jakub Szefer
Dept. of Electrical Engineering, Yale University

EENG 428 / ENAS 968
Cloud FPGA

Share:
bit.ly/cloudfpga

Logic Synthesis

This lecture is mostly based on contents of Chapter 2, from “The Verilog
Hardware Description Language” book [1], 5th edition. Example figures and
(modified) code are from the textbook unless otherwise specified.

Topics covered:
• Specifying combinatorial logic using gates and continuous assign
• Specifying combinatorial logic using procedural statements
• Inferring sequential elements
• Describing finite state machines
• Finite state machines and datapath

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 3

Share:
bit.ly/cloudfpga

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 4

Logic Synthesis, Combinatorial Logic

Share:
bit.ly/cloudfpga

Synthesis Overview

Goal of logic synthesis is to generate a hardware design that can be realized using logic
gates and registers (flip-flops)

Input design (Verilog)

Register-transfer level description

Optimization

Technology mapping

Synthesizable subset of Verilog
• Constructs which can be mapped to digital logic
• Not all Verilog can be mapped to hardware

• Recall Verilog was designed for testing, many parts are for simulation and testing

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 5

Simplify logic
equations, etc.

“Register-Transfer Level (RTL) is a
design abstraction which models a

synchronous digital circuit in terms of the
flow of digital signals (data) between
hardware registers, and the logical

operations performed on those signals” [2]

Map the design into
specific physical
implemenation:

FPGA, ASIC, etc.

Purpose of CAD
(Computer Aided Design)

tools such as Xilinx
Vivado or Intel Quartus

Share:
bit.ly/cloudfpga

Combinatorial Logic Using Gates

• Combinatorial logic can be explicitly specified using logic gates and interconnections
between the gates: a structural specification

• Logic synthesis tool will then interpret the specification, optimize it, and map the design to
logic gates

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 6

Different technologies have
different gates, or even no gates

(in FPGA design is mapped to
Lookup Tables)

Synthesized design is equivalent
to the specification, but need not
be identical to the gates used in

Verilog

Logic Synthesis

No delays are
specified, e.g. no
and #5, delays

depend on
physical

implementation
that the design

targets

Share:
bit.ly/cloudfpga

Combinatorial Logic Using assign

• Combinatorial logic can be alternatively specified using Boolean algebra-like statements
• Verilog has more operators so can write simpler expression
• Can write only using Boolean algebra operators (and, or, not) if desired

• assign can be driven by logical expressions,
or using functions

• Functions in Verilog are like mini combinatorial
logic modules

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 7

Logical expression
for signal f

Function example from
http://www.asic-world.com/verilog/task_func1.html

Share:
bit.ly/cloudfpga

More Combinatorial Logic Specification Options

• Combinatorial (and sequential) logic can be parametrized
to adjust the width of the signals

• E.g. use different width for different module instances
• Default width if not overwritten when instantiated

• assign statements in synthesizable design cannot use
don’t care values on left-hand side

• Right-hand side is okay, lets CAD tools optimize the design

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 8

Function example from
http://www.asic-world.com/verilog/task_func1.html

Use { and } to
concatenate signals

C-like conditional
selection

There are only physical
1s and 0s, can’t compare

to don’t care x; can’t
synthesize this

Okay to assign don’t care
value, CAD tools will pick
1 or 0 that optimizes the

design best

Share:
bit.ly/cloudfpga

Combinatorial Logic Using Procedural Statements

• Combinatorial logic can be specified with always statements, if certain rules are followed
• Sensitivity list has to include all the signals on the right-hand side in the always block
• No posedge or negedge in sensitivity list
• Left-hand side signals need to be assigned a value

for all possible input combinations

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 9

Use @(*) or @*
to automatically

derive the
sensitivity list

Use “default”
value for all left-

hand side
signals

Alternate specification with always @ (*)
and default value for f

Share:
bit.ly/cloudfpga

Avoiding Inferred Latches

• Combinatorial logic’s output only depends on the current inputs
• There is no memory

• If combinatorial logic is specified incorrectly, latches may be inferred
• Logic will have memory
• No-longer combinatorial logic

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 10

Level-sensitive,
or gated, latch;
controlled by

input a

Share:
bit.ly/cloudfpga

Combinatorial Logic with case Statements

• A case statement can be used to specify the output of combinatorial logic in a manner
similar to a truth table

• Can make use of features like default case or don’t care values to shorten the description
of the logic and synthesize better design

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 11

Share:
bit.ly/cloudfpga

Synthesis Attributes

• Verilog code can be augmented with attributes, also called compiler directives
• Not part of code
• “Hints” to the compiler

• Example of attributes with case:

• Other examples: (* keep = true *) to prevent signal
from being synthesized away or merged with other logic

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 12

full_case: hint that
unspecified values

should be treated as
don’t cares, an no

latch should be
inferred

parallel_case: hint that
the case statement has
no overlapping cases

Be careful that attributes
or directives can be tool
specific, or may behave

differently.

keep example from
Vivado documentation

Share:
bit.ly/cloudfpga

Combinatorial Logic with casex Statements

• The casex statement, allows for the use of x, z, or ? in
the controlling expression or in a case item expressions

• Can be used to specify don't cares for synthesis
• For sythesis, x, z, or ? may only be specified in

case item expressions

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 13

Share:
bit.ly/cloudfpga

Combinatorial Logic with Loop Statements

• The for loop in Verilog may be used to specify combinational logic
• The while and forever loops are used for synthesizing sequential logic
• The generate loops are used to generate Verilog code blocks with well defined patterns

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 14

Share:
bit.ly/cloudfpga

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 15

Logic Synthesis, Sequential Logic

Share:
bit.ly/cloudfpga

Sequential Logic Elements

• Sequential elements are: latches and flip-flops
• Latches and flip-flops store bits of data
• Latches are level-sensitive
• Flip-flops are edge-sensitive

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019

Latch Flip-Flop

This is active-low
reset, typically would

write name as
reset_n so it’s clear

it’s active low (n =
negative)

16

Flip-Flop with Reset and Set

Share:
bit.ly/cloudfpga

Rules for Sequential Logic Elements

For synthesis of sequential logic, the always blocks need to follow some rules
• The sensitivity list must contain only posedge or negedge of clock, reset, and set

• Clock, reset, and set can have any names, clock could be xyz or foo
• Body of always block must be if ... else if ... else

• Can skip else if when there is only reset, but no set
• Test reset and set conditions first (asynchronous reset and set)
• If posedge test for value, if negedge test for ~value
• Use non-blocking <= assignment operator

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 17

Share:
bit.ly/cloudfpga

Describing Finite State Machines

• Finite State Machines (FSM) are made of combinatorial and sequential logic
• Represent behavior of a system as a set of finite states

• The state is encoded in the flip-flop
• Alternatively, values of all the flip-flops in a design

determine the current state of the FSM

• Behavior of FSM can be specified by a state
transition diagram, and later transferred to Verilog

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 18

Share:
bit.ly/cloudfpga

Describing Finite State Machines

• Example FSM in Verilog:

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 19

Local parameters, not to
be confused with module
parameters, can only be
defined inside module

Define local parameters to
assign names to states of

the FSM

Combinatorial logic Sequential logic

Share:
bit.ly/cloudfpga

FSM Description with Multiple always Blocks

• Multiple always blocks can be used in parallel to describe different parts of the system

• Textbook example of a pipeline with three registers
• Each register is controlled by

separate always statement
• All always statements are

working in parallel

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 20

Share:
bit.ly/cloudfpga

Datapath and Controller FSM

Computational task can be often broken down into datapath and controller FSM
• Datapath is the logic that performs the computation
• Controller FSM controls the steps of the computation

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 21

Many CPUs or microcontrollers are designed in
this way: a computation pipeline and controoler

Datapath

Controller

Share:
bit.ly/cloudfpga

Datapath and Controller FSM

• The example silly computation
has four datapath
components

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 22

Share:
bit.ly/cloudfpga

Datapath and Controller FSM

• The example silly computation
has one FSM

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 23

$display (print)
statement will

only show up in
simulation

Share:
bit.ly/cloudfpga

Datapath and Controller FSM

• The example silly computation
has one top-level module to
combine datapath and FSM

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 24

Share:
bit.ly/cloudfpga

Synthesizable Verilog Summary

Not all of Verilog is synthesizable, designs to be implemented on FPGAs (or ASICs)
need to follow rules to make sure the code synthesizes as desired:

• No gate or other delays with #
• Can use functions for combinatorial logic

(functions have no delays #); do not use tasks,
tasks have delays # and are used mostly
for writing testbenches

• No don’t cares x in left-hand side of an assign
• If using always to define combinatorial logic

ensure sensitivity list has all right-hand
values and all left-hand values are
assigned something for each input

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 25

Share:
bit.ly/cloudfpga

References

1. Donald E. Thomas and Philip R. Moorby. " The Verilog Hardware Description Language, Fifth Edition.”
Springer. 2002

2. “Register-transfer level” Wikipedia, The Free Encyclopedia. Available at:
https://en.wikipedia.org/w/index.php?title=Register-transfer_level

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 26

