
Cloud FPGA

EENG 428
ENAS 968

bit.ly/cloudfpga

Share:
bit.ly/cloudfpga

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 2

Lecture: Amazon F1 HDK and SDK

Prof. Jakub Szefer
Dept. of Electrical Engineering, Yale University

EENG 428 / ENAS 968
Cloud FPGA

Share:
bit.ly/cloudfpga

Amazon F1 Cloud FPGAs

• Cloud FPGAs in Amazon Web Services let users
access large numbers of UltraScale+ FPGAs
in different geographic regions

• Amazon Web Services provides access to FPGAs
via a f1.2xlarge, f1.4xlarge, and f1.16xlarage instances

• Actual configuration is not publicly known,
but can assume 8 FPGA servers where
smaller number of FPGAs are given to
each user

• The 2x, 4x, and 16x can share all servers
or there may be dedicated servers for
each instance type

• Amazon provides tools for programming
the FPGA and software development
for using the hardware running on FPGAs
with the server: the HDK and SDK

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 3

PCIe

FPGA boards

Server

Xilinx Virtex UltraScale+

f1.2xlarage
= 1 FPGA

f1.4xlarage
= 2 FPGAs

f1.16xlarage
= 8 FPGAs

Share:
bit.ly/cloudfpga

Amazon F1 Cloud FPGAs

Running your hardware in Cloud FPGA requires two main components:
• Hardware design loaded on the FPGAs
• Software running on the server to communicate with the hardware design that is on the FPGA
Hardware Development Kit (HDK):
• Develop the design and create bitstreams, also called

Amazon FPGA Images (AFIs)
• No need to use HDK if using pre-built AFI

Software Development Kit (SDK):
• Tools for High-Level Synthesis (not needed

if developing your own Verilog code)
• Tools for loading AFIs and interacting with FPGAs
• C libraries and Python bindings, plus Linux drivers

for software that uses the FPGAs

HDK and SKD git: https://github.com/aws/aws-fpga
EENG 428 / ENAS 968 – Cloud FPGA

© Jakub Szefer, Fall 2019 4

FPGA boards

Server

Develop hardware
designs using the

HDK

Develop software
designs using the

SDK

PCIe

Share:
bit.ly/cloudfpga

Development and Deployment Process in AWS

Development of F1 hardware, and using the hardware, has four steps

• Development is enabled by the HDK and SDK, and deployment is enabled by EC2
and the AWS marketplace

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 5

Image from:
https://github.com/aws/aws-fpga/

Develop the hardware, in
Verilog (or other HDL), or using

higher-level languages like
OpenCL, or using HLS

Compile (synthesize) the
design into the custom

hardware module
Get the design approved and

obtain an Amazon FPGA Image
Rent F1 instance to run the

design, or give (or sell) access
to the AFI to others

Allows to sell
access to hardware

designs

Share:
bit.ly/cloudfpga

Overview of Development Tools

• A number of tools are provided to aid in the development
• Mostly Xilinx tools
• Plus scripts and custom IP cores
• May examples of custom logic are also provided

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 6

Information from:
https://github.com/aws/aws-fpga/

Build process can take many
hours; also want to shut down

VM instance once build
finishes to save money

Designs are always submitted
to Amazon for approval and to

get AFI, seems mostly
automated process now, but

still can take some time

Share:
bit.ly/cloudfpga

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 7

Amazon F1 HDK

Share:
bit.ly/cloudfpga

Hardware Development Kit

Amazon’s FPGA Hardware Development Kit (HDK):
• Contains useful information, examples, and scripts for building hardware designs and

generating the Amazon FPGA Images (AFI)
• Includes the development environment, simulation, build and AFI creation scripts
• It contains Xilinx’s Vivado tools, plus IP cores, e.g. PCIe,

and custom scripts form Amazon
• Can be run in “development” VM on most EC2 instances
• Can potentially run locally on your own machine

Different HDK versions exist

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 8

Recall cost of different types of instances, F1
instances are expensive and FPGA is not required
when developing the code:
• Develop design on instance with no FGPA, e.g.

c4.4xlarge
• Later load up f1 instance to actually run the AFI

on an FPGA

Need Xilinx license and IP cores
corresponding to ones used by
Amazon

Hardware design needs to match the
HDK version, may need to check out
older HDK version to get the version
to match

Information and HDK version table from [1]

Share:
bit.ly/cloudfpga

HDK and Hardware Development Concepts

A brief list of concepts listed by Amazon relating to the development of the use of HDK
and developing hardware on FPGAs:
• Scripting languages (shell, tcl)
• RTL (Verilog or VHDL)

development
• Synthesis tools and the iterative process of

identifying timing critical paths and optimizing
hardware to meet timing

• Familiarity with concepts related to designing
for FPGAs, DMA, DDR, AXI protocol and Linux drivers

• RTL simulation and experience with simulation debug or
FPGA runtime waveform viewer debug methods

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 9Concept list taken from [1]

Most HDK commands are invoked from the Linux
shell; while tcl (tool command language) scripts

are used by Vivado tools

Other languages can be used
such as SystemVerilog

Leverage ideas such as pipelining,
parallelism, etc., covered in small
part by the course and textbook

FPGA design and AXI are almost
required, others are “hidden” by

scripts and tools provided

Standard part of design process, but
Amazon also some custom solutions
like virtual JTAG, virtual LEDs, and

virtual DipSwitches

Share:
bit.ly/cloudfpga

Developing Designs with the HDK

Development cycle can be roughly broken into three steps when using Amazon servers
for all steps of the development process:
1. Develop and simulate the design

• Write code, check for bug
• Simulate, check design works

2. Synthesize the design
• Make sure timing and other parameters are met
• Submit digital checkpoint to create AFI

3. Run the design on an FPGA
• Actually use the design!

FPGA Developer AMI:
• VM image pre-loaded with Vivado

and required licenses

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 10Concept list taken from [1]

Perform on less expensive instance,
e.g., t2.2xlarge, as does not require lot
of computational power

Perform on more expensive instance,
e.g., c4.2xlarge, to compiler faster

Perform on most expensive instance,
e.g., f1.2xlarge, to actually use the FPGA

Share:
bit.ly/cloudfpga

Developing Designs Locally

Designs can be developed in large part locally, even without HDK:
• Write Verilog code in any editor
• Check syntax and basic debugging with testbenches

and iverilog, for example
• If using standard interface such as AXI, can test

whole design with testbench
that also uses AXI

Then locally or remotely finish the development:
• Use HDK locally (if have license) to make the design into custom logic (CL)

and finish testing and synthesis of whole design
• Start FPGA Developer AMI with the HDK and make the design into CL

and finish testing and synthesis

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 11

Regardless of approach,
it is good practice to

have testbench for each
module anyway; don’t
wait with testing until
whole design is done!

Can have possible issues with different
AXI versions and implementation

Custom Logic (CL) is basically
user’s hardware design connected

to AXI ports that go to PCIe and
possibly DRAM modules –

developing user’s module as AXI
module is almost required

Share:
bit.ly/cloudfpga

FPGA Shell Interface and User’s Custom Logic

• Using Cloud FPGAs requires some standard modules
• PCIe controller to communicate with the server
• DRAM controller to use DRAM modules
• AXI bus interfaces
• QSFP interfaces
• Virtual logic analyzer
• …

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 12

FPGA chip

PCIe
Ctrl.

User Logic

DRAM
Ctrl.

Other
Ctrl.

Block diagram from [2]

Share:
bit.ly/cloudfpga

FPGA Shell Interface and User’s Custom Logic

Most of the communication between Shell and the Custom Logic is done through AXI bus

• Different variants of AXI are used
• AXI4 512-bit
• AXI4-Lite 32-bit
• AXI4-Stream 512-bit

• Some other signals are just wires
coming into the CL, or register values
going out of the CL

• Advantage is standard AXI interface

• Disadvantage is the fixed bit width
• Hardware may generate data much

faster than can be moved off chip

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 13Block diagram from [2]

Share:
bit.ly/cloudfpga

FPGA Shell Address Map

FPGAs are attached by PCIe to the servers
• Each FPGA “Slot” presents a single FPGA

with two PCIe Physical Functions (PFs)
• Each PF has multiple

Base Address Registers (BARs)

• The BARs are mapped to the instance’s memory-mapped I/O (MMIO) space
• Writing to the specific address range will cause data to be sent to PCIe, not memory
• Reading from a specific address range will cause data to come from PCIe, not memory

• Addresses need to be mapped to the Linux kernel or a user-space application before
accessing them

• Kernel mapping for DMA related BARs
• User-space mapping for some management and simple peek() and poke() communication

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 14

F1 servers have up to 8 slots, e.g.
2x instance has only 1 FPGA

which is on slot 0, 16x instance
has 8 FPGAs on slots 0 to 7

PCIe (and PCI) devices are identified by BDF
(Bus:Device.Function) notation, e.g. 00:02.0

• Physical BDF of real devices
• Virtual BDF exposed to the VM

Share:
bit.ly/cloudfpga

FPGA Shell Address Map

• Each FPGA slot is associated with two
PCIe physical functions

• Each has multiple BARs

• BARs have specified sizes,
but their actual address is fixed
when the VM is started

• Not all addresses in BARs are used
if the FPGA is not configured
with the corresponding functionality

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 15Address map from [3]

Share:
bit.ly/cloudfpga

Programmer’s View of the Custom Logic

Software has multiple ways
to communicate with the hardware
running on the FPGA:

A. Command line tools
B. Management library (C or Python)
C. OpenCL related
D. PCIe library (C or Python)
E. DMA interface – requires kernel driver
F. Interrupts – requires kernel driver
G. Kernel DMA driver

• XDMA kernel driver
• XOCL kernel driver, OpenCL related

I. OpenCL related

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 16Image from [4]

Share:
bit.ly/cloudfpga

Program Interaction with Hardware on FPGA

• Read or write 32-bit values from registers
in the CL (PCIe lib.)

• “Burst” read or write 32-bit values form
registers in the CL (PCIe lib.)

• DMA data between server’s DRAM and the
FPGA board (DMA lib.)

• No explicit interaction, only setup
• No explicit interaction, only setup

• CL needs to have registers and AXI
state machine to respond to reads or writes

• CL needs registers and state machine to handle
accesses to contiguous addresses

• CL needs state machine and registers or use
DRAM for DMA data transfers

• Optional CL logic for initiating DMA transfers
• Optional CL logic for FPGA-to-FPGA

communication (future)

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 17

PCIe

Share:
bit.ly/cloudfpga

Simulating Custom Logic

Like any hardware design, it needs to be simulated to check functionality, find bugs, etc.
• Amazon provides module to generate the testbenches

• Include custom hardware (user’s CL)
• Include corresponding software

• Less expensive and saves time to run
simulation rather than make AFIs
and test on FPGAs

• Testbench simulates how the PCIe and
other components to generate AXI
signals based on software’s operation

• Also simulate DRAM operation
• Any AXI replies, virtual LED updates, etc.,

are sent back to the software running
in simulation

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 18

Share:
bit.ly/cloudfpga

Timing and Available Custom Logic Clocks

Once timing of the CL is found,
appropriate clock needs to be used

• Shell (set via configuration file) outputs
a number of clocks

• Default is 250Mhz
• Clocks available up to 500Mhz

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 19

Share:
bit.ly/cloudfpga

Runtime Debugging: Virtual LEDs and DIP Switches

• There are virtual LEDs and DIP switches
that can be used to control
and monitor users’ CL design

• There are 16 virtual LEDs
and 16 virtual DIP switches

• Virtual LEDs are connected to 16 output wires going to user’s CL
• Can be driven from the CL logic to the SH from cl_sh_status_vled[15:0] signal

• Virtual DIP switches are connected to 16 input registers going to user’s CL
• Are driven from the SH to the CL logic to sh_cl_status_vdip[15:0] signal

Users can an use the command line commands fpga-get-virtual-led to read the
virtual LED values, and fpga-set-virtual-dip-switch to set the virtual DIP switch
values on the Shell-to-CL interface.

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 20

Physical LEDs and DIP switches on Altera board

With cloud FPGAs
there is no physical

access to FPGAs, so
virtual versions of

LEDs, switches, etc.
are needed

Altera DE1 mage from
https://www.intel.com/content/www/us/en/progr

ammable/solutions/partners/partner-
profile/terasic-inc-/board/altera-de1-board.html

Share:
bit.ly/cloudfpga

Runtime Debugging: Virtual JTAG

JTAG (named after Joint Test Action Group) is an industry standard for verifying electronic
designs, typically embedded systems or system-on-a-chip after manufacturing
• A simple serial interface used for programming a devices, or reading their state
• Common application is to use JTAG to write some data or “program” a device

• Most FPGAs are programmed by JTAG via USB-to-JTAG cable
• Multiple devices can be connected to same JTAG port

• E.g. there is 1 JTAG port for a system-on-a-chip giving access to all the components

Example JTAG Scan Chain
• JTAG pins

• TMS (Test Mode Select)
• TCK (Test Clock)
• TDI (Test Data In)
• TDO (Test Data Out)

• Use device ID to select device, common
commands can be read, write, change function

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 21

Image from
https://en.wikipedia.org/wiki/JTAG

Share:
bit.ly/cloudfpga

Runtime Debugging: Virtual JTAG

Virtual JTAG creates JTAG
interface into the logic inside the CL
• Separate from JTAG used to program

the FPGA chip

Use with Vivado modules for runtime
debugging
A. CL Debug Bridge receives JTAG

commands
B. Virtual JTAG server receives remote

JTAG commands and passes them to
the FPGA

C. JTAG commands are sent, for
example, by Vivado software

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 22Image from [4]

Share:
bit.ly/cloudfpga

Runtime Debugging: Virtual JTAG

• Integrated Logic Analyzer (ILA) is a IP core that behaves like a logic analyzer, can capture
real-time changes in values of different signals and send them for debugging purpose to a
waveform viewer

• Virtual Input/Output (VIO) is an IP core that behaves like a input or output pin, but instead
of data coming or going to physical FPGA pin, it goes to virtual pin that can be written or
read by JTAG commands

Sample image of Vivado
with an ILA output:

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 23

Image from
https://en.wikipedia.org/wiki/JTAG

Share:
bit.ly/cloudfpga

Runtime Timeout Issues

The shell provides timeout mechanism in case the FPGA design is not responding in time

• Each command ends up being a request on the corresponding AXI bus
• CL register related AXI bus
• DMA related AXI bus

• AXI transactions are terminated after 8 us
• According to Amazon’s documentation, timeouts can occur for three reasons:

• The CL doesn’t respond to the address (reserved address space)
• The CL has a protocol violation on AXI which hangs the bus
• The CL design’s latency is exceeding

the timeout value

• Command line tools give information about
timeouts

• But will notice in software quickly if,
e.g., peek() and poke() commands
don’t work

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 24

Share:
bit.ly/cloudfpga

Runtime Power Analysis and Protection Features

The servers with FPGAs need to be protected from the FPGAs using too much power,
which could cause shutdown or physical damage to FPGAs and/or the server

• afi-power-warning will be generated if power is above 85 Watts
• Xilinx Virtex UltraScale+ FPGA VCU1525 and Xilinx Alveo U200/U250/U280 Accelerator Cards

are rated with Thermal Design Power (TDP) of 225 Watts

• afi-power-violation will be generated if certain power threshold is breached
• Value not clearly stated by Amazon
• Likely depends on current server load
• All clocks will be throttled or disabled on power violation
• Unclear if design is unloaded or FPGA reset

if clock throttling or stopping clocks does not help

• Command line tools can show average power usage,
updated ever 1 min. after that image is loaded

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 25

Share:
bit.ly/cloudfpga

Design Time Evaluation of Power Usage

Dynamic power of a circuit can be approximated by 𝐏 = 𝑪𝑽𝟐𝒇 where C is capacitance, f is
frequency, and V is voltage

• C – reduce capacitance by having smaller or simpler circuit
• V – voltage is fixed by the FPGA chip
• f – frequency depends on clock used (usually want fastest clock, but can select slower

clock to save on dynamic power)

Design and architectural options:
• Use multiple clock domains, some parts of design run slower
• Use flip-flops with enable and only enable when needed
• Use clock gating, turn off clock to parts of design

FPGA tools like Vivado give estimated
power for whole design and submodules

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 26

As FPGA chips shrink
below 10nm, static power
becomes an issue as well

Share:
bit.ly/cloudfpga

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 27

Amazon F1 SDK

Share:
bit.ly/cloudfpga

Amazon F1 SDK

The Software Development Kit (SDK) provides tools and libraries that run in the VM
and let users interact with the hardware

SDK includes:

• Linux Kernel Drivers
• XDMA Driver, DMA interface to

and from HDK accelerators
• XOCL Driver, DMA interface with

software defined accelerators (HLS designs)
• FPGA Libraries - APIs used by host applications

• C/C++ library
• Python bindings

• FPGA Management Tools

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 28

fpga_mgmt
• Get FPGA status, load image, clear image, etc.
• Read virtual LEDs
• Set virtual dip switches

fpga_pcie
• PCIe setup related
• peek() and poke() implementations

fpga_dma – functions to control Direct Memory Access
• Setup DMA
• Copy data from device
• Copy data to device

SDK information from
https://github.com/aws/aws-fpga/#fpgasdk

Share:
bit.ly/cloudfpga

References

Links to HDK pages from Amazon’s AWS git include the version number, some documents seem to be not updated
as frequently as others, thus the listed versions are not always the same. Most recent version as of when the
slides were made was v1.4.10 for the HDK.

1. “AWS FPGA Hardware Development Kit (HDK), RELEASE V1.4.8” Available at: https://github.com/aws/aws-
fpga/blob/master/hdk/README.md

2. “AWS Shell Interface Specification, v1.4.5” Available at: https://github.com/aws/aws-
fpga/blob/master/hdk/docs/AWS_Shell_Interface_Specification.md

3. “AWS FPGA PCIe Memory Map, v1.4” Available at: https://github.com/aws/aws-
fpga/blob/master/hdk/docs/AWS_Fpga_Pcie_Memory_Map.md

4. “AWS FPGA: Programmer's View of the Custom Logic, v1.4” Available at: https://github.com/aws/aws-
fpga/blob/master/hdk/docs/Programmer_View.md

5. “Virtual JTAG for Real-time FPGA Debug, v1.4.4” Available at: https://github.com/aws/aws-
fpga/blob/master/hdk/docs/Virtual_JTAG_XVC.md

6. “RTL Simulation for Verilog/VHDL Custom Logic Design with AWS HDK, v1.4.10” Available at:
https://github.com/aws/aws-fpga/blob/master/hdk/docs/RTL_Simulating_CL_Designs.md

EENG 428 / ENAS 968 – Cloud FPGA
© Jakub Szefer, Fall 2019 29

