
Intrinsic Rowhammer PUFs:
Leveraging the Rowhammer Effect

for Improved Security

André Schaller∗, Wenjie Xiong†, Nikolaos Athanasios Anagnostopoulos∗, Muhammad Umair Saleem∗,
Sebastian Gabmeyer∗, Stefan Katzenbeisser∗ and Jakub Szefer†
∗Technische Universität Darmstadt and CYSEC, Darmstadt, Germany

†Yale University, New Haven, CT, USA

Abstract—Physically Unclonable Functions (PUFs) have be-
come an important and promising hardware primitive for device
fingerprinting, device identification, or key storage. Intrinsic
PUFs leverage components already found in existing devices, un-
like extrinsic silicon PUFs, which are based on customized circuits
that involve modification of hardware. In this work, we present a
new type of a memory-based intrinsic PUF, which leverages the
Rowhammer effect in DRAM modules – the Rowhammer PUF.
Our PUF makes use of bit flips, which occur in DRAM cells due
to rapid and repeated access of DRAM rows. Prior research has
mainly focused on Rowhammer attacks, where the Rowhammer
effect is used to illegitimately alter data stored in memory, e.g., to
change page table entries or enable privilege escalation attacks.
Meanwhile, this is the first work to use the Rowhammer effect
in a positive context – to design a novel PUF. We extensively
evaluate the Rowhammer PUF using commercial, off-the-shelf
devices, not relying on custom hardware or an FPGA-based setup.
The evaluation shows that the Rowhammer PUF holds required
properties needed for the envisioned security applications, and
could be deployed today.

I. INTRODUCTION

In recent years, attacks that exploit the Rowhammer effect
have gained a lot of attention, as they can enable a plethora
of security-related risks due to the wide-spread vulnerability
imposed by the Rowhammer effect in today’s DRAM modules.
The phenomenon was first described by Kim et al. [1], who
were able to induce so-called disturbance errors in high-
density, commodity DRAM modules by repeatedly accessing
uncached memory rows. Disturbance errors occur due to
the charge coupling between DRAM cells, which accelerates
charge leakage in adjacent rows, and eventually results in
bits being flipped in so-called victim rows in DRAM, even
though said victim rows were not explicitly accessed. The
Rowhammer effect allows for breaking many software-based
security mechanisms, as well as memory and process isolation,
because it allows flipping memory bits, which would otherwise
be protected by software-based access control mechanisms.
Numerous papers have been published that use the Rowham-
mer effect in order to improve the identification of vulnerable
DRAM cells or to implement various Rowhammer attacks [2],
[3], [4], [5].

In contrast to the existing work on the Rowhammer effect,
we present a novel approach that uses DRAM disturbance

errors, in order to strengthen the security of DRAM-equipped
devices, instead of attacking such platforms. We propose to
use bit flips, induced by the Rowhammer effect, as basis for a
Physically Unclonable Function (PUF) that allows for robust
identification of DRAM-equipped devices. We further present
a software-only solution that works on commodity hardware
and which enables runtime queries to the Rowhammer PUF,
not requiring custom hardware or an FPGA setup. Prior work
on DRAM PUFs has considered using the decay characteristics
of DRAM cells when refresh is disabled, e.g. [6], but the
Rowhammer effect as a source of a PUF has not been explored
so far. Compared to existing DRAM decay-based PUFs, the
Rowhammer PUF takes advantage of disturbance errors to
increase the entropy of the PUF response. With our new ap-
proach, we enable DRAM-equipped low-cost platforms to use
hardware-based fingerprinting, identification, or key storage
mechanisms without adding extra logic, e.g., as opposed to
extrinsic arbiter PUFs that require new circuits to be added
to the computing platform. Since many, if not most, DRAM-
equipped platforms are affected by the Rowhammer effect [1],
application of Rowhammer PUF goes well beyond just the
platforms tested in this work. Additionally, unlike most known
intrinsic PUFs, particularly SRAM-based PUFs, which can
only be accessed at SRAM boot-up time, the Rowhammer PUF
can be queried both at boot-up time and at runtime of a system.

Contributions

This paper extends the field of Physically Unclonable
Functions (PUFs) with the following contributions:

• We introduce the Rowhammer PUF, which leverages distur-
bance errors among DRAM rows that manifest themselves
as bit flips, which are used as basis for the new type of
Physically Unclonable Function.

• We implement the Rowhammer PUF on commodity, off-the-
shelf devices, in a way which is accessible during runtime
and which requires no custom hardware or an FPGA setup.

• We provide an extensive evaluation, showing very good
metrics for uniqueness, robustness and entropy. We further
show the PUF’s ability to operate at different ambient
temperatures in a stable manner.

II. BACKGROUND

A. DRAM Data Storage and Access

DRAM stores a “bit” as charge on a capacitor. A single
DRAM cell consists of a capacitor for storage and a transistor
for access, as shown in Figure 1(a). The gate of the transistor is
connected to a wordline (WL). Each wordline controls access
to the whole row. The capacitor is connected to a bitline
(BL) through the transistor. Each bitline is also connected to
an equalizer and a sense-amplifier to convert charge on the
capacitor to a digital signal. DRAM cells are organized in
arrays, as in Figure 1(b). Each array is also called a bank.
Usually, a DRAM chip consists of 8 banks.

The charge on the capacitor will leak over time, and data
in the cell will be lost. Figure 1(a) shows several charge
interaction paths where the charge may leak. The time until
a cell loses its data is called the data retention time. To
keep data for longer time, wordlines of each row must be
accessed periodically, so that the sense-amplifiers recharge the
capacitors of that row through the bitlines. This process is
called “DRAM refresh”. To ensure data integrity, every DRAM
row needs to be refreshed with a certain frequency, which is
usually 32 to 64ms in current DRAMs.

B. The Rowhammer Effect in DRAM

The Rowhammer effect, which is based on disturbance
errors in DRAM cells, has been discovered in recent years [1].
It is an unintended side effect in DRAM that occurs when
one memory row (the hammer row) is rapidly and repeatedly
accessed. This causes cells in nearby rows to leak charge
more quickly and thereby introduces changes (i.e., “bit flips”)
to the contents of the affected memory cells. This is due to
the interaction between adjacent wordlines as well as between
DRAM cells and their neighbouring capacitors and wires, as
depicted in Figure 1(a). It has been shown that hammering a
row will most likely affect its two adjacent rows. Consequently,
double-sided Rowhammer, where both adjacent rows of a
victim row are hammered, has been proposed to increase the
chance of bit flips [2].

Usually, to allow for a sufficiently high DRAM access rate,
and thus to trigger disturbance errors, non-cached memory
accesses are needed, e.g., by leveraging the CLFLUSH instruc-
tion. Lately, several works have demonstrated the feasibility to
exploit the Rowhammer effect on platforms that do not provide
such cache line flush instructions. In order to circumvent CPU
caching mechanisms and ensure direct access to DRAM, Gruss
et al. [7] and Aweke et al. [8] enforce cache eviction through
elaborate memory access patterns. Qiao and Seaborn [9] make
use of x86 non-temporal store instructions, which do not
use the CPU cache and van der Veen et al. [3] utilize non-
cacheable DMA queries to exploit the Rowhammer effect.
Other papers have presented techniques to gain understanding
of the locations of flipping bits. Razavi et al. [5] presented
a technique that allows for targeted bit flips at arbitrary
physical memory locations by combining the Rowhammer
effect with memory duplication. In order to conduct predictable
Rowhammer attacks, van der Veen et al. [3] use a brute-force
approach to hammer all DRAM rows and collect information
about expectable bit flip locations.

Fig. 1. (a) Schematic of DRAM cells: the blue arrows show potential charge
interaction paths. (b) DRAM organization.

Since its discovery, the Rowhammer effect has been used
mainly as means of attacking a computer system. In particular,
changing the contents of memory cells can result in modifi-
cation of important data. Seaborn and Dullien [2] as well as
van der Veen et al. [3] rely on the Rowhammer effect in order
to gain root privileges, by flipping bits in page table entries.
Xiao et al. [4] attack Xen’s paravirtualized memory isolation
by employing the Rowhammer effect from within a malicious
virtual machine. Razavi et al. [5] as well as Bhattacharya and
Mukhopadhyay [10] successfully attack RSA by creating bit
flips in keys stored in DRAM.

Meanwhile, to the best of our knowledge, this is the first
work that leverages the Rowhammer effect in a positive way.

C. Memory-Based Intrinsic PUFs

In this work we focus on the class of intrinsic PUFs, which
do not require the addition of extra circuits to a device in order
to use them. Unlike extrinsic PUFs that necessitate addition of
circuitry, e.g., arbiter circuits, intrinsic PUFs only use standard
hardware components already present in commodity computer
systems, such as SRAM or DRAM memory arrays. SRAM
PUFs have been studied extensively and are based on the
startup values that SRAM cells take on after powering on a
device [11], [12]. DRAM-based PUFs have so far only lever-
aged DRAM cells’ start-up values [13], or DRAM cell-decay
effects [6]. In contrast, this work presents the Rowhammer
PUF, which is a new type of an intrinsic, DRAM-based PUF
that uses the Rowhammer effect.

III. ROWHAMMER PUF IN COMMODITY DRAM

Previous work has shown that the locations of disturbance
errors in DRAM cells are stable [1], [3]. This makes the
Rowhammer effect a promising candidate for a PUF. However,
the number of bit flips introduced by the Rowhammer effect
can be relatively small, and thus may only provide a limited
amount of entropy. We thus introduce three techniques to
help increase entropy, without changing the physical DRAM
properties. First, we disable DRAM refresh for those memory
locations where the PUF is located. This prevents the PUF cells
from being recharged, as would happen if normal refresh was
on, and increases the number of bit flips. Second, multiple

Fig. 2. Rowhammer types: (a) Double-sided Rowhammer (DSRH) with PUF
size = 12KB; (b) Single-sided Rowhammer (SSRH) with PUF size =
16KB. We assume DRAM with 4KB row size.

DRAM rows are used together to create an instance of the
Rowhammer PUF that encompasses larger amount of cells.
Third, hammering time and initial values of the DRAM cells
are controlled to induce a maximum number of bit flips.

A. Rowhammer PUF Parameters

There are many parameters that can influence the Rowham-
mer PUF. In Section IV, we present an evaluation upon which
the most suitable values among these parameter are selected.

Rowhammer type: As presented in the literature [2], [8],
there are two approaches, or Rowhammer types (RH types),
in order to induce the Rowhammer effect. If for one victim
row there is only one adjacent hammer row, used to induce
bit flips, we call it single-sided Rowhammer (SSRH). In
contrast, double-sided Rowhammer (DSRH) involves exposing
both neighbors of a particular victim row as hammer rows. The
patterns of hammer and victim rows (also called PUF rows),
used to conduct SSRH and DSRH are shown in Figure 2.

PUF address and size: The PUF address defines the
starting address of a PUF in the DRAM. The PUF size
depends on the the number of rows that are examined after the
Rowhammer process finishes (PUF rows in Figure 2). Due to
the existence of hammer rows, PUF rows are not consecutive.
PUF size and RH type influence the actual hammering
frequency, as smaller PUFs will allow each hammer row to be
accessed more frequently. Likewise, SSRH has fewer hammer
rows, so each can be accessed more often within the same
time period.

Hammer row IV (initial value): For the memory range that
corresponds to PUF address and PUF size, correspond-
ing hammer rows will be pre-initialized by writing Hammer
row IV to it, before conducting the Rowhammer process.

PUF row IV (initial value): Similarly, all PUF rows that are
included in this memory range are initialized with PUF row
IV before the Rowhammer process is started. Both, Hammer
row IV and PUF row IV are important parameters because
disturbance errors are caused by interaction of DRAM cell
charges. Moreover, DRAM cells represent a particular logic
value using different charge states, resulting in so-called true-
cells and anti-cells [14]. True-cells represent a logic ‘1’ as
charge on the capacitor and ‘0’ as no charge, while anti-cells
do the opposite. Consequently, initializing a true-cell with ‘0’
would not lead to a bit flip in that cell. Thus, it is important
to evaluate the effect of different values of PUF row IV and

Algorithm 1: Process of the Rowhammer PUF query.
Data: RH_type, PUF_address, PUF_size,

Hammer_row_IV, PUF_row_IV, RH_time
Result: PUF measurement m
· reserve memory defined by PUF_address and PUF_size;
· initialize PUF rows with PUF_row_IV and hammer rows

with Hammer_row_IV;
· disable auto-refresh of PUF rows;
while t < RH time do

for ri ∈ hammer rows do
· read access to row ri;

end
end
· enable auto-refresh;
· read PUF rows as PUF measurement m;

Hammer row IV. As the layout of true- and anti-cells is
identical for DRAM modules of the same type, once optimal
settings for both initial values have been found, they can be
re-used for other instances of the same device type.

Rowhammer time: The Rowhammer time (RH time) de-
fines the total duration of the PUF measurement, including
disabling the refresh rate and conducting the hammering
process. RH time, just as PUF size and RH type, affects
how many times each hammer row will be accessed in total.

B. Rowhammer PUF Access

Given the above parameters, the process of accessing a
Rowhammer PUF is depicted in Algorithm 1. Based on PUF
address, PUF size, and RH type, the DRAM region for
the Rowhammer PUF is defined. First, this DRAM region is
reserved, such that no other program accesses the same region.
Next, the PUF rows and hammer rows are initialized with
Hammer row IV and PUF row IV, respectively. The PUF
query is started by disabling the DRAM auto-refresh in the
next step. This is done using the same technique as employed
in [6]. Subsequently, the process of hammering respective rows
is started. For this purpose, the hammer rows need to be
accessed repeatedly for a certain time. This is achieved by a
read operation to the first word of each hammer row, which in
turn causes the whole DRAM row to be refreshed. Hence, bits
in the PUF rows will start to leak charge and will eventually
flip. After RH time, the process ends and the DRAM auto-
refresh is enabled again. Finally, the PUF measurement can be
read from the PUF rows.

C. Factors Affecting the Rowhammer PUF

Because the Rowhammer PUF is inherently tied to the
underlying physical properties of the DRAM modules, there
are three factors that can influence the operation of the PUF.

Temperature: Prior work has shown that Rowhammer victim
cells are not strongly affected by temperature [1]. However,
the Rowhammer PUF is based on the interaction of the
Rowhammer effect and DRAM decay, which was shown to
be temperature-sensitive. Thus, we evaluate the temperature
effect in Section IV, which confirms that the Rowhammer PUF
exhibits increased bit flips but stable noise values at higher
operating temperatures.

Voltage: Prior work has also shown that voltage affects the
leakage in DRAM cells [15]. In commodity, off-the-shelf
devices there is currently no interface to control the voltage of
DRAM cells. We assume that for the Rowhammer PUF, the
DRAM operates at the factory specified voltage parameters.
Voltage factors will be investigated in future work.

Error Correcting Codes (ECC): ECC can be used in DRAM
to protect from bit flips. Many computing platforms, such
as the PandaBoard used in this work, do not have ECC
implemented. Even if ECC is present, the authors of [16]
showed that ECC is not enough to mitigate the Rowhammer
effect. In order to use the Rowhammer PUF when ECC is
used, the PUF size would have to be increased. Further,
ECC registers that indicate rows, which observed bit flips,
could potentially be exploited for PUF measurements. We will
explore this in future work. In this paper we assume that no
ECC is used.

D. Software Implementations in Commodity Devices

In this paper, the Rowhammer PUF is implemented and
tested on the PandaBoard [17]. The PandaBoard ES Revision
B3 used in our experiments houses a TI OMAP 4460 System-
on-Chip (SoC) module and 1GB DDR2 memory from ELPIDA
in a Package-on-Package (PoP) configuration, which operates
at 1.2V. Our PUF implementation is purely in software, leaving
hardware configuration unchanged.

The Rowhammer PUF is implemented in the U-Boot boot
loader. Since the DRAM is idle during U-Boot runtime, queries
to the Rowhammer PUF can be conducted without affecting
other functions of the platform. In U-Boot, one can control the
DRAM refresh cycle. Further, one can access physical DRAM
addresses without caching1.

The reference manuals provide the physical address map-
ping of the DRAM. We allocate hammer rows and PUF rows
in Bank0 and make them adjacent, as shown in Figure 2(a–b).

It is further possible to access the Rowhammer PUF from
within a kernel module to achieve runtime access. Similar to
U-Boot, DRAM refresh can be disabled from kernel space.
Moreover, in contrast to U-Boot, where caching can be avoided
by accessing the Rowhammer PUF during an early point of
DRAM initialization, the kernel module allows for disabling
caching by setting respective register values can be disabled if
the platform does not support the CLFLUSH instruction.

IV. EVALUATION

In this section, we will provide details on the various
characteristics of the proposed Rowhammer PUF. We will
first discuss how different values of the parameters presented
in Section III-A affect the number of observed bit flips. We
then evaluate the Rowhammer PUF on the basis of a fixed
parameter configuration with regards to uniqueness, robustness
and entropy. Finally, we discuss varying ambient temperature
conditions that could influence the Rowhammer PUF.

1PandaBoard implements an ARM processor that does not provide the
CLFLUSH instruction. Thus, we avoid caching by querying the Rowhammer
PUF during an early stage during DRAM initialization, before caching is
enabled by the boot loader.

TABLE I. PARAMETERS USED FOR EVALUATION OF THE ROWHAMMER
PUF CHARACTERISTICS, AND THEIR CORRESPONDING SET OF VALUES.

Parameter Evaluated Values

RH type single-sided (SSRH), double-sided (DSRH)
PUF size 4KB, 32KB, 128KB
Hammer row IV ‘0x00’, ‘0x55’, ‘0xAA’, ‘0xFF’
PUF row IV ‘0x00’, ‘0x55’, ‘0xAA’, ‘0xFF’
RH time 60s, 120s

We will follow an explorative approach, which involves
assessment of a subset of all potential parameter values. Due
to the lack of information about the distribution of true- and
anti-cells2, it is necessary to explore the correlation between
parameter values and PUF behavior experimentally, by testing
various parameter settings.

In our evaluation, three different memory regions, each
located on one individual PandaBoard, are measured3. For all
of the measurements, the PUF address was fixed. For each
parameter combination, 20 measurements were taken.

A. Effects of Rowhammer Parameters

Given the high dimensional parameter space (see Sec-
tion III-A), we focussed on evaluating such configuration
settings that are expected to yield a good PUF. An overview
of all evaluated parameter settings is given in Table I. For the
sake of brevity, we only present most important results of the
extensive evaluation data we obtained.

In order to extract the maximum possible entropy from
PUF measurements, we primarily strive to maximize the
number of bit flips. For this purpose, we first identify those
parameters that have the largest effects on the amount of bit
flips. In the following, we will discuss the parameters listed in
Table I, in the context of their impact on observable bit flips.

The bit flips we observe in the Rowhammer PUF measure-
ments are due to the hammering process and the DRAM cell
decay that emerges after DRAM refresh is disabled. In order to
confirm that the Rowhammer effect adds a significant number
of extra flips, we measured the number of bit flips, which are
solely caused by the decay process, and compared it to the
total number of bit flips we observed in the Rowhammer PUF
measurements. Compared to the bit flips caused by DRAM
decay, the Rowhammer PUF introduces 2.4 times bit flips in
60 seconds and about twice the number of bit flips in 120
seconds. Further, the set of bits that flip (i.e., their locations
in the measurements) obtained from the Rowhammer PUF
only partially overlaps with the set of bit flips induced by
the DRAM decay process, even for longer decay times (i.e.,
without the influence of the Rowhammer effect). Thus, the
Rowhammer PUF induces new bit flips, which are at different
locations compared to the DRAM decay process.

Rowhammer type: Initially, we expected the RH type pa-
rameter to have a strong influence on the number of flipped
bits. In Figures 3(a–b), we present the fractional number
of bit flips as a percentage of the absolute number of bits

2Usually this is the case when dealing with commercial, off-the-shelf
devices as most vendors treat such implementation details regarding their
hardware components as intellectual property and thus will not disclose them.

3In the following we denote such a memory region as a PUF instance.

TABLE II. OVERVIEW OF THE AVERAGE NUMBER OF OBSERVABLE BIT FLIPS, DEPENDING ON COMBINATIONS OF HAMMER ROW IV AND PUF ROW

IV. CONFIGURATION USED: PUF SIZE= 128KB AND RH TIME= 120S (SSRH/DSRH).

Hammer row IV

PUF row IV ‘0x00’ ‘0x55’ ‘0xAA’ ‘0xFF’

’0x00’ 7405 / 8032 17558 / 20358 7391 / 7200 17288 / 20152
’0x55’ 0 / 0 0 / 0 0 / 0 0 / 0
’0xAA’ 22547 / 24480 32904 / 37548 14218 / 14243 24479 / 28268
’0xFF’ 15633 / 17798 15402 / 17579 6132 / 6479 6095 / 6416

(a) (b)

Fig. 3. Fractional number of bit flips, given in percent relative to PUF size, using PUF row IV=‘0xAA’. Left: number of bit flips using SSRH. Right:
number of bit flips using DSRH.

available (PUF size). Contrary to our expectations, applying
DSRH (right) instead of SSRH (left), does not lead to a
highly increased number of flips, despite hammering both rows
adjacent to respective PUF rows. Instead, compared to SSRH,
using DSHR only leads to ≈ 9% more bit flips in 60 seconds
and to ≈ 15% in 120 seconds on average.

PUF size: The PUF size influences the total time required
to execute a single iteration of hammering the DRAM. In
our implementation, each hammer row is accessed roughly
every 6µs when hammering 2 rows (4KB PUF) and every 8µs
when hammering 17 rows (128KB PUF) in the SSRH setting.
Figures 3(a–b) show the number of bit flips relative to PUF
size. The number of bit flips does not change significantly
for different values of PUF size, i.e., the fraction of bit flips
for different memory ranges stays stable.

Hammer row and PUF row IV: Given that DRAM arrays
consist of true-cells and anti-cells, the initial value (IV) of
the hammer rows as well as the PUF rows is expected to
play an important role regarding the number of observable
bit flips. Depending on the type of a cell, a bit flip in a PUF
row can be observed only if the cell is initialized with the
logic value that corresponds to its charged state. Similarly,
due to physical interaction of charged analog elements in the
hammer and PUF rows (i.e., wires and capacitors) and the
resulting charge interaction paths, different IVs of the hammer
rows influence the number of bit flips as well. Thus, the
values of both parameters must be chosen carefully, in order
to maximize bit flips. As can be seen from Table II, different
configurations of Hammer row IV and PUF row IV lead
to measurements that exhibit different bit flips. In general,
it can be inferred from the experiments, that the number of

bit flips on the PandaBoard can be maximized, if PUF rows
are pre-initialized in such a way that keeps true-cells and
anti-cells in the charged state, whereas cells of the adjacent
hammer rows are kept in an uncharged state. In particular,
the measurements show that most bit flips can be observed,
if PUF rows are initialized with ‘0xAA’, which depicts a
bit-wise checkerboard pattern, with a leading ‘1’. Adjacent
hammer rows are set up using the complementary pattern,
starting with a ‘0’ bit (‘0x55’). In contrast, no bit flips can be
observed when initializing PUF rows with ’0x55’, as in this
case, cells of the PUF rows were initialized corresponding to
their uncharged states.

Summary: The parameters Hammer row IV and PUF row
IV have a predominant influence on the number of bit flips,
which we strive to maximize. We therefore first fix their
values as follows: Hammer row IV=‘0x55’ and PUF row
IV=‘0xAA’. We further set RH type to SSRH, as the number
of introduced bit flips is in the same order of magnitude as for
DSRH. Additionally, SSRH requires ≈ 55% less memory and
involves less memory accesses compared to DSRH. Although
setting RH time= 120s leads to ≈ 400% more bit flips as
for 60s, we will provide evaluation results for both parameter
values. The resulting PUF readout time is similar to existing
runtime accessible decay-based DRAM PUFs.

B. PUF Characteristics

In order to assess the applicability of the set of flipped bits
as a PUF, we validated uniqueness, robustness and entropy
of the Rowhammer PUF measurements, using the parameter
configuration identified above. Instead of using metrics that

Fig. 4. Histogram of Jinter and Jintra values for three PUF instances using
20 measurements with PUF row IV=‘0xAA’, Hammer row IV=‘0x55’,
PUF size = 128KB and RH type set to SSRH.

are based on the Hamming distance (i.e., inter- and intra-
Hamming distance), we follow the approach of [6] and utilize
the Jaccard index [18]. This is motivated by the fact that
DRAM-based PUFs show different characteristics compared
to classic PUFs (such as SRAM-based PUFs). In particular,
measurements from DRAM modules draw their PUF char-
acteristics from the location of the flipped bits. This fact
(uniqueness of indices) is not properly reflected in Hamming
distance-based measures. Let sx denote the set of indices
of flipped bits in the corresponding PUF measurement mx.
The Jaccard index between two measurements is calculated as
J(s1, s2) =

|s1∩s2|
|s1∪s2| , depicting their similarity.

Uniqueness and Robustness: Uniqueness is measured by
means of the Jinter metric. This metric compares the indices of
bit flips between pairs of measurements obtained from different
PUF instances. Ideally, for maximal PUF uniqueness, the two
sets should have no common elements (i.e., no overlaps of
bit flip locations), resulting in Jinter values close to ‘0’. In
contrast, the Jintra metric measures the PUF’s robustness, in
particular the influence of noise, present in subsequent PUF
measurements obtained from a fixed PUF instance. Here, the
elements of two sets should be identical in the best case,
resulting in Jintra close to ‘1’.

Figure 4 shows histograms of values obtained for both
metrics. Clearly, both histograms separate, indicating that
Rowhammer PUF instances can be robustly and uniquely
identified. With a minimum Jintra value of 0.9454, Rowham-
mer PUF measurements exhibit a maximum noise of ≈ 5%,
which can be easily corrected by standard Fuzzy Extractor
constructions [19].

Entropy: PUF measurements should exhibit sufficient entropy
in order to derive a cryptographic key. We estimated the en-
tropy of the PUF measurements, as proposed in [6]. Denoting
the total number of bits contained in a PUF measurement (i.e.,
PUF size) as N , k as the cardinality of sx and assuming
that the locations of flipped bits are distributed uniformly, the
entropy can be calculated as follows: H = log2

(
N
k

)
.

Using the minimum number of bit flips (k = 30994) ob-
served in the measurements, based on the optimized parameter
setting identified above (N = 1048576 =̂ 128KB), the lower

TABLE III. COMPARISON OF THE AVERAGE NUMBER OF BIT FLIPS
AND MINIMUM Jintra VALUES OBTAINED AT OPERATING TEMPERATURES

OF 40◦C, 50◦C AND 60◦C USING THE OPTIMAL PARAMETER
CONFIGURATION FOR PUF SIZE = 128KB.

Metric Operational Temperature

40◦C 50◦C 60◦C

avg. bit flips 32904 65431 132450
min. Jintra 0.9662 0.9810 0.9847

bound for the fractional entropy (i.e., the entropy per cell),
is 0.192. Given the vast amount of available cells, the PUF
measurements show sufficient entropy to derive cryptographic
keys. For example, the derivation of a 128bit key, given entropy
of 0.192 requires approximately 85Bytes (excluding entropy
required to compensate leakage due to helper data), while the
PUF is already 128KB.

Temperature Dependency: The behavior of DRAM bit flips
can be influenced by the operating temperature. In order to
validate usage of the Rowhammer PUF in several operating
temperatures, we evaluated the PUF at temperatures of 40◦C
(working temperature of DRAM on Pandaboard), 50◦C and
60◦C. We computed the number of bit flips and Jintra val-
ues for measurements taken at these respective temperatures.
Table III shows the average number of bit flips as well as
the minimum Jintra (i.e., maximum noise). The temperature
evaluation shows that, while bit flips increase at higher tem-
peratures, the noise level stays constant for each temperature.
Thus, the Rowhammer PUF exhibits sufficient stability to be
used at higher temperatures.

V. CONCLUSION

This paper presented the Rowhammer PUF, a new type
of an intrinsic, memory-based PUF. Unlike the majority of
work that has used the Rowhammer effect to trigger a security
exploit, this is the first paper that uses the Rowhammer effect in
a positive context. We extensively evaluated the Rowhammer
PUF using commercial, off-the-shelf devices, not requiring
custom hardware or an FPGA-based setup. The evaluation
showed that the Rowhammer PUF holds required properties
needed for device authentication or cryptographic key storage.

As with any new hardware security primitive, further work
is required to expand the understanding of the Rowhammer
PUF. Especially, we expect to perform studies investigating
how voltage affects the Rowhammer PUF. Moreover, aging
experiments with use of a thermal chamber need to be con-
ducted to understand the long-term stability of this new PUF
under various conditions. Finally, we will investigate how to
improve the PUF readout time. The code of our design will
be made available as Open Source at http://www.seceng.de/
schaller/rowhammer-puf/.

ACKNOWLEDGEMENT

This work has been partly funded by the German Research
Foundation (DFG) as part of project P3 within the CRC 1119
CROSSING and the German Academic Exchange Service
(DAAD).

REFERENCES

[1] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson,
K. Lai, and O. Mutlu, “Flipping bits in memory without accessing
them: An experimental study of DRAM disturbance errors,” in ACM
SIGARCH Computer Architecture News, 2014, pp. 361–372.

[2] M. Seaborn and T. Dullien, “Exploiting the DRAM rowhammer bug to
gain kernel privileges,” Black Hat, 2015.

[3] V. van der Veen, Y. Fratantonio, M. Lindorfer, D. Gruss, C. Maurice,
G. Vigna, H. Bos, K. Razavi, and C. Giuffrida, “Drammer: Determin-
istic Rowhammer Attacks on Mobile Platforms,” in ACM Conference
on Computer and Communications Security, 2016.

[4] Y. Xiao, X. Zhang, Y. Zhang, and R. Teodorescu, “One bit flips, one
cloud flops: Cross-vm row hammer attacks and privilege escalation,” in
USENIX Security Symposium, 2016.

[5] K. Razavi, B. Gras, E. Bosman, B. Preneel, C. Giuffrida, and H. Bos,
“Flip feng shui: Hammering a needle in the software stack,” in USENIX
Security Symposium, 2016, pp. 1–18.

[6] W. Xiong, A. Schaller, N. A. Anagnostopoulos, M. U. Saleem, S. Gab-
meyer, S. Katzenbeisser, and J. Szefer, “Run-Time Accessible DRAM
PUFs in Commodity Devices,” in International Conference on Crypto-
graphic Hardware and Embedded Systems, 2016, pp. 432–453.

[7] D. Gruss, C. Maurice, and S. Mangard, “Rowhammer. js: A re-
mote software-induced fault attack in javascript,” arXiv preprint
arXiv:1507.06955, 2015.

[8] Z. B. Aweke, S. F. Yitbarek, R. Qiao, R. Das, M. Hicks, Y. Oren, and
T. Austin, “ANVIL: Software-based protection against next-generation
rowhammer attacks,” in International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, 2016, pp.
743–755.

[9] R. Qiao and M. Seaborn, “A new approach for rowhammer attacks,”

in International Symposium on Hardware Oriented Security and Trust,
May 2016, pp. 161–166.

[10] S. Bhattacharya and D. Mukhopadhyay, “Curious case of Rowhammer:
Flipping Secret Exponent Bits using Timing Analysis,” in International
Conference on Cryptographic Hardware and Embedded Systems, 2016,
pp. 602–624.

[11] J. Guajardo, S. S. Kumar, G.-J. Schrijen, and P. Tuyls, FPGA intrinsic
PUFs and their use for IP protection. Springer, 2007.

[12] G.-J. Schrijen and V. van der Leest, “Comparative analysis of SRAM
memories used as PUF primitives,” in Conference on Design, Automa-
tion and Test in Europe, 2012, pp. 1319–1324.

[13] F. Tehranipoor, N. Karimina, K. Xiao, and J. Chandy, “DRAM based
Intrinsic Physical Unclonable Functions for System Level Security,” in
Great Lakes Symposium on VLSI, 2015, pp. 15–20.

[14] J. Liu, B. Jaiyen, Y. Kim, C. Wilkerson, and O. Mutlu, “An experimental
study of data retention behavior in modern DRAM devices: Implications
for retention time profiling mechanisms,” in ACM SIGARCH Computer
Architecture News, 2013, pp. 60–71.

[15] T. Hamamoto, S. Sugiura, and S. Sawada, “On the retention time
distribution of dynamic random access memory (DRAM),” IEEE Trans-
actions on Electron Devices, pp. 1300–1309, 1998.

[16] B. Aichinger, “DDR memory errors caused by Row Hammer,” in High
Performance Extreme Computing Conference, 2015, pp. 1–5.

[17] “PandaBoard,” http://www.pandaboard.org accessed Nov. 2016.
[18] P. Jaccard, Etude comparative de la distribution florale dans une portion

des Alpes et du Jura. Impr. Corbaz, 1901.
[19] Y. Dodis, L. Reyzin, and A. Smith, “Fuzzy extractors: How to generate

strong keys from biometrics and other noisy data,” in International Con-
ference on the Theory and Applications of Cryptographic Techniques,
2004, pp. 523–540.

