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ABSTRACT

Hardware cache prefetching has a profound impact on the
memory access pattern of ciphers which are exploited in
profiled cache-timing attacks. In this paper, we formally
demonstrate that memory access patterns influenced by se-
quential prefetching and its variant, known as even-odd pre-
fetcher has varying information leakage dependent on the
alignment of the underlying tables used in the cipher imple-
mentation. This demonstrates that a suitable architecture
choice for the hardware prefetcher combined with appropri-
ate memory alignment in software can lead to prefetching
architectures which are leakage resilient.

Keywords: Hardware Prefetcher, cache miss, quantify-
ing information leakage, profiled cache-timing attacks.

1. INTRODUCTION
In 2005, D. J. Bernstein developed a profiled cache-timing

attack on AES [2]. The attack had two phases, first a learn-
ing phase in which the attacker uses a known key (or an
exact replica of the attack platform) to build a timing pro-
file known as the template. Then, for the unknown key,
the attacker builds another timing profile, correlates it with
the template to obtain secret information about the cipher.
Bernstein’s attack was analyzed in [8] and [5], and adapted
to attack CLEFIA in [10].

There have been several attempts made which analyze the
reason for the attack to work. Bernstein in [2] attributed the
non-constant encryption time to be the cause for leakage
in profiled cache-timing attacks. Non-constant encryption
times are due to look-up tables used in implementation of
ciphers. Although there are methods to implement ciphers
without tables, such as bit-slicing [4] and dedicated instruc-
tions [12], but they are limited to operating modes that do
not support feedback or restricted to certain ciphers. There-
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fore, tables are mandatory in cipher implementations which
operate in feedback modes and do not have dedicated in-
structions.

A formal treatment for profiled cache-timing attacks was
introduced in [9]. Here, a method to quantify leakage in
these attacks was developed. It was shown that hardware
cache prefetching [6], a common feature in most modern mi-
croprocessors, resulted in non-uniform encryption time and
therefore a cause of leakage in profiled cache-timing attacks.
Two commonly used prefetching strategies namely sequen-
tial prefetching and arbitrary-stride prefetching [1] were ana-
lyzed in [9]. The results in [9] shows that sequential prefetch-
ing resulted in considerable leakage and the magnitude of
leakage was affected by the size and number of tables used
in the cipher implementation, as well as prefetching bound-
aries and relative placement of the tables in memory. Also
in [3], it was shown that the popular sequential prefetch-
ing algorithm can result in non-constant encryption time in
timing profile and thus results in information leakage. The
paper [3] considers block cipher CLEFIA and its vulnera-
bility due to sequential prefetching is demonstrated using a
metric Timing SVF in the context of profiled cache-timing
attacks.

An obvious way to prevent leakage due to prefetching is
to disable the prefetcher. However, this may hamper the
performance of applications. It is therefore required to have
prefetching algorithms which do not compromise the secu-
rity of the application. In this paper we analyze the leakage
involved in a variant of sequential hardware prefetching al-
gorithm termed as even-odd sequential (EOS), which is used
in certain Intel microprocessors such as Intel Xeon E5345.
We formally analyze this prefetching algorithm using met-
rics developed in [9] and show that leakage due to the EOS
prefetcher depends on the size and alignment of the tables
used in the cipher. Further, we show that for certain table
alignments there is no leakage due to the EOS prefetcher.
The results were verified with cachegrind 1. We show that
for a particular table alignment the leakage is always zero
and for other alignments leakage reduces for large tables.

The contributions of the work are as follows:

• We identify a new prefetching algorithm: Even-Odd
Sequential Prefetcher and formally analyze the prefetcher
using combinatorial and provable techniques.

1http://valgrind.org/docs/manual/cg-manual.html



• From the analysis we conclude that for a particular ta-
ble alignment this prefetching technique results in zero
leakage and we validate the result using cachegrind-
the cache profiler.

The organization of the paper is as follows: in the next
section we briefly introduce the profiled cache-timing at-
tack and the common variants of hardware prefetching al-
gorithm. In Section 3, a formal analysis of Even-Odd Se-
quential prefetcher is presented for four separate table align-
ments. Section 4 starts with the formulation of cache miss
distribution followed by a validation step where the behav-
ior of each predicted distribution is compared with empirical
distributions from a cache profiler. Finally in Section 5, we
compute and compare the leakage from the distributions us-
ing the Kullback-Leibler Divergence metric across the table
alignments. Using this metric we show that for a particular
table alignment the EOS prefetcher do not leak any infor-
mation. In Section 6, we conclude the work that we present
here.

2. PRELIMINARIES
In this section we initially provide a brief discussion on

profiled cache-timing attacks and is followed by an introduc-
tion to hardware prefetching algorithms present in modern
microprocessors.

2.1 Profiled Cache-Timing Attacks
The profiled cache-timing attack has 3 phases: learning,

attack, and analysis phase. During the learning phase, the
adversary uses a known key (or an exact replica of the attack
platform) to build a timing profile for each key byte. The
timing profile for the first key byte (k0) of OpenSSL’s AES2

is shown in Figure 1(a). The profile has on the x−axis, all
possible values corresponding to the plaintext byte p0, and
on the y−axis the average encryption time corresponding
to when p0 was fixed at a certain value and the remaining
input bytes varied randomly. Note that Figure 1(a) shows
the deviation from average encryption time, instead of the
actual encryption time. The timing profile was build with
around 224 encryptions and called the template in this phase
of the attack.

During the attack phase, the adversary builds a similar
timing profile, only this time for the unknown key byte.
Such a profile is shown in Figure 1(b). It can be noted that
this profile is very similar to the template in Figure 1(a),
except for a shift, which occurs due to the equal images un-

der different sub-keys (EIS) [11] property of the cipher. It is
this EIS property that results in the leakage of information
about the secret key. During the analysis phase this shift is
determined using correlation techniques in order to retrieve
the unknown key byte. In similar manner timing profiles
constructed for other bytes can be used to determine other
parts of the key. However, we consider only the first byte.
Similar analysis can be made for other key bytes as well.

In [2], constant-time cipher implementations were first dis-
cussed. In such a scenario, the timing profiles would have
a straight line that overlaps with the x-axis, thereby every
value of p0 would result in exactly the same average encryp-
tion time and retrieving the unknown key byte would be
impossible.

2http://www.openssl.org

Input: The access to memory block at address ti

begin
if (ti not in cache) or (ti was prefetched and this is the
first access to ti) then

if ti+1 not present in the cache then
prefetch ti+1

end

end

end

Algorithm 1: SP : Sequential Prefetching Algorithm

Input: Address of the memory block accessed (ti)
begin

if (ti is not present in cache) or (ti was prefetched and
this is the first access to ti) then

if ti is even and ti+1is not in cache then
prefetch ti+1

end

if ti is odd and ti−1 not in cache then
prefetch ti−1

end

end

end

Algorithm 2: EOS: Even-Odd Sequential Prefetching

2.2 Hardware Cache Prefetching
In a memory intensive program such as a block cipher

implemented with look-up tables, the performance bottle-
neck is due to the penalty in servicing the cache misses.
Modern cache-memories however have micro-architectural
components in order to reduce the miss penalty. Hardware
prefetching [6] is one such component in which data is au-
tomatically prefetched into the cache from the main mem-
ory before it is actually referenced. A prefetcher reduces
cache miss penalty by predicting future memory accesses on
the basis of the current memory access. But this prefetch-
ing techniques leads to serious leakages in profiled cache-
timing attacks. In this work our focus is on a form of hard-
ware prefetching known as the even-odd sequential (EOS)
prefetching. In this section we summarize the standard se-
quential prefetching algorithm followed by the Even-Odd Se-
quential prefetching.

Sequential Prefetching : The sequential prefetching al-
gorithm [1] loads the subsequent memory block as presented
in Algorithm 1. In the algorithm ti is the current memory lo-
cation addressed while ti+1 is the adjacent memory location
where t is the base address of the table and i is the index.
In [9, 3], this prefetching algorithm was shown to have a
major influence in the information leakage in block ciphers.
The cause for the leakage is due to timing observations or
more precisely the cache miss profiles shows a deviation due
to the behavior of this prefetching algorithm.

Even-Odd Prefetching: The algorithm triggers the prefetch
for the adjacent memory block where location is determined
by the address of the current access. If the memory block
accessed is even then the next block is prefetched, while if
the memory block accessed is odd then the previous block
is prefetched. This prefetcher algorithm essentially doubles
the size of the cache line for the memory block accessed. De-
tails of the prefetching algorithm is present in Algorithm 2.

3. MATHEMATICAL MODEL FOR CACHE

MEMORY ACCESSES
Leakage in the profiled cache-timing attack is entirely due

to accesses to the look-up tables used in the cipher imple-



(a) Timing Profile for the Known Key (b) Timing Profile for the Unknown Key

Figure 1: Timing Profiles for Known Key and Unknown Key for OpenSSL’s AES Implementation on Intel
Core 2 Duo. The x-axis has the possible values of the plaintext byte p0 and the y-axis has the deviation of
the encryption time from the average

mentation, thus we can analyze profiled cache-timing attacks
in terms of the cache misses [13]. The execution time of the
cipher implementation is directly proportional to the total
number of cache hits and misses suffered by the implemen-
tation.

Consider a cipher which is implemented with a look-up
table that occupies l memory blocks. Note that, the size
of a memory block is equal to the cache line size. If the
cache line has δ bytes then intuitively, the table exactly fits
in l × δ memory elements. Let us assume that during the
cipher execution the table is accessed nmax number of times
at random locations3. Since the accesses are random, a par-
ticular access to the lookup table results in a cache hit when
any previous access resulted in an access to the same loca-
tion in the table and has not been removed from the cache
by the cache replacement policy. Moreover, recent micro-
architectural features such as prefetchers prefetch blocks of
memory in the cache memory, which has not yet been ac-
cessed by the implementation but has a probability of get-
ting accessed in near future.

Thus, for an arbitrary access to a random location in
lookup table can result in a cache hit or miss depending on
two factors: whether the same location has been requested
earlier and else whether some previous accessed memory re-
quest in turn prefetched the requested memory location. In
this paper, we attempt to provide a formal analysis of cache
profiling and leakage involved with a variant of sequential
prefetcher named as Even-Odd Sequential prefetcher in the
same lines of the modeling proposed in [9]. We perform
the analysis in context to the profiled cache-timing attack
scenario and we also claim that the underlying prefetching
algorithm has a significant effect on the respective cache pro-
files. The steps involved in the formal analysis is as follows:

• Obtain the probability of a cache hit in the n
th access to

the lookup-table, where 1 ≤ n ≤ nmax.

• Obtain the conditional probability of a cache hit in the
n
th memory access to the lookup-tables, with the EOS

prefetcher.

• From the above steps, obtain the distribution of the number
of cache misses. This distribution is Gaussian and therefore
can be characterized by its mean and variance.

• Apply the Kullback-Leibler divergence to quantify the in-

formation leakage.

3The assumption of random accesses is justified as it is
an essential requirement of block cipher constructions

The analysis is based on the assumption that no part of
the table is present in the cache at the start of encryption.

3.1 Probability of a Cache Miss in the nth Ac-
cess in a Classical Cache

A classical cache is defined as a cache where the cache
accesses are performed purely on request and are not affected
by any prefetching algorithm. In order to have a cache hit
in the nth access to the table, there should be a collision
with at-least one of the previous n − 1 memory accesses.
Let AC

l,n be a random variable that denotes the result of the

nth memory access to the table of size l in a system having
a classical cache. AC

l,n can take values of either H or M
respectively corresponding to a cache hit and a cache miss
in the nth memory access. The probability of obtaining a
cache hit in the nth access is given by [9],

Pr[AC
l,n = H ] =

1

ln−1

n−2
∑

i=0

(

n− 1

i

)

(l − 1)i

The probability of obtaining a cache miss in the nth memory
access is

Pr[AC
l,n = M ] = 1− Pr[AC

l,n = H ]

3.2 Probability of a Cache Hit in the nth Ac-
cess in a Cache Supporting Prefetching

In a cache memory that supports hardware prefetching,
a cache hit in the nth memory access to a table may oc-
cur in two ways [9]. It may either be that the access collides
with any of the previous memory accesses (the classical case)
or the data have been prefetched. Let P denote the given
prefetching strategy and AC,P

l,n the random variable denot-

ing the result of the nth access to the table of size l. The
probability of obtaining a cache hit in the nth access is

Pr[AC,P

l,n = H ] =Pr[AC,P

l,n = H | collision] · Pr[collision]

+ Pr[AC,P

l,n = H | collision] · (1− Pr[collision])]

For the case where a collision has occurred, the probabil-
ity of a cache hit is exactly equal to the probability of cache
hit in the classical case. For the case when no collision has
occurred, a cache hit is obtained only if the data has been
prefetched. Let AP

l,n denote a random variable which de-

notes probability of obtaining a cache hit in the nth access
exclusively due to prefetching. So the equation is rewritten
as follows,

Pr[AC,P

l,n = H ] = Pr[AC
l,n = H ]+Pr[AP

l,n = H ]·(1−Pr[AC
l,n = H ])]



3.3 Conditional probability of the even-odd se-
quential prefetcher

In the attack proposed by Bernstein in [2], the correla-
tion property over two timing profiles of a known key-known
plaintext pair and an unknown key - known plaintext pair is
used to determine the unknown key. So if a previous access
is known to us, the probability of obtaining a cache hit gets
affected since the requested memory block may have been
already prefetched by any of the previous accesses. Thus we
analyze the conditional probability of obtaining a cache hit
conditioning on the previous occurrences of plaintext.

Let us assume that Tm is a random variable which de-
notes the block in the table accessed in the mth access. The
probability of hit of nth access depends on the previous ac-
cesses, thus we aim to determine Pr[AEOSP

l,n = H | Tm],

where AEOSP
l,n is the random variable which denotes the

cache event due to the memory element requested by the
cipher at the the nth access in presence of the Even-Odd
Sequential prefetcher. Here we assume m = 1 thus con-
ditioning on the first access. While we model the leakage
for even-odd sequential prefetcher, it has also been observed
that the conditional probability changes depending on the
alignment of the tables in memory which is illustrated in the
following discussion.

3.3.1 Effect of Table Alignment on probability distri-
butions

The lookup table of the cipher implementation occupies l
adjacent blocks in memory where each block contains same
number of elements δ as that of a cache line. Thus the mem-
ory blocks of table lookup if indexed are l successive blocks
alternatively having even and odd indices. As in this paper
we model the leakage of the Even-odd Sequential prefetcher,
the index of the accessed memory block either being even or
odd, decides the memory block going to be prefetched by
the prefetcher. Thus the alignment of table in memory does
have an impact while analyzing the number of cache misses
from table lookup.

The starting index of the lookup table of the cipher im-
plementation may either be from an odd indexed memory
location or from an even indexed location. Moreover, the
number of memory blocks the table occupies will depend on
the cipher specifications. Thus accordingly the lookup table
may end in an odd indexed location or an even indexed loca-
tion. There are clearly four cases: the starting index can be
either even or odd, and depending on the length of the table
the last index can again be even or odd, thus the analysis of
each of the four cases requires separate attention.

Even-Odd Alignment: When the starting index of the
table is even and the number of blocks in the table, l is also
even. Thus the last index of the table is odd. During the
cipher execution, if an even indexed block is accessed then
the EOS prefetching algorithm will automatically prefetch
the following odd indexed block(if not already in cache).
Similarly, an access to the odd indexed block will result in a
prefetch of its previous even index block. Thus in the even-
odd alignment, each block in the table prefetches exactly
one block of memory belonging to the same table. In other
words, each block of the table can be prefetched by another
block of the same table.

Odd-Odd Alignment: When the starting index of the ta-
ble is odd and l is also odd. Thus the last block of the

table has an odd index. Now, for this case, since the start-
ing index of the table is odd, the memory block with even
index responsible for prefetching the starting index is not
a part of the lookup table. Thus the starting index can-
not be prefetched by any memory block belonging to the
table. The probability of cache misses of odd-odd alignment
thus differs from the even-odd case. The remaining memory
blocks apart from starting block in this odd-odd alignment,
behaves exactly same as the blocks in even-odd alignment.

Odd-Even Alignment: When the starting index of the
table is odd and l is also even. Thus the last block has index
even. In this alignment, neither the starting odd indexed
block of the table can be prefetched by any other block from
the table, nor the last even indexed block can prefetch any
block of the table. The remaining blocks apart from the first
and last block has similar behavior as even-odd Alignment.

Even-Even Alignment: When the starting index of the
table is even and l is also even. Thus the last block has
index even. In this table alignment, only the last block of
the table has no prefetch candidate inside the table. Apart
from the last block, the probabilities remain same as the
previous cases. Because of the fact that in the even-odd
alignment all cache lines behave identically, we observe the
cache hit-miss distribution does not depend on the previous
cache accesses. We show formally next, this helps to make
this configuration of the cipher tables not leak due to the
hardware prefetcher and also compare the leakage to the
other table alignments.

In the following analysis, we tackle the four cases sepa-
rately as the probability equations for each of the cases will
change as the table alignment changes.

3.3.2 Even-Odd Alignment

As the name suggests the table starts from an even loca-
tion, length of the table is even and thus ends in an odd
location. The probability of hit due to the prefetching is
conditioned such that the first access is the last block of the
table. So the probability of a cache hit given that the first
access T1 has occurred is calculated below.

The equation can be explained as all the memory blocks
are prefetchable there are two cases: the probability that
the nth access is a hit due to the block being prefetched
by the first access T1 and the case where the block being
prefetched by any other n−2 accesses other than the known
first access T1 and Tn. Let EOSP be a function which
returns the prefetched memory block ie. EOSP (tb) = tb+1

if tb is even and EOSP (tb) = tb−1 if tb is odd.

Pr[AEOSP
l,n = H

∣

∣T1] =

Pr[AEOSP
l,n = H|Tn = EOSP (T1)] · Pr[Tn = EOSP (T1)]

+ Pr[AEOSP
l,n = H|Tn 6= EOSP (T1)] · Pr[Tn 6= EOSP (T1)]

There are two components in this equation.

• When Tn = EOSP (T1), it would certainly cause a
cache hit. Also, since Tn cannot have a collision with
T1, it can only take l − 1 different values and not l.
Thus,

Pr[Tl,n = EOSP (T1)] =
1

l − 1



• When Tn 6= EOSP (T1). This happens with probabil-
ity 1 − (1/(l − 1)). A hit in the nth access occurs if
and only if Tn = EOSP (Ti) and 2 ≤ i ≤ n − 1. The
probability with which this happens is given by the
following equation.

Pr[AEOSP
l,n =H | Tn 6= EOSP (T1)] =

α

(l − 2)(l − 1)n−2
·

n−2
∑

i=1

(

n− 2

i

)

(l − 2)n−2−i

,where α is the number of prefetchable blocks.

◦ since Tn 6= T1 and Tn 6= EOSP (T1). Thus, α =
l − 2.

Thus combining two parts overall equation is written as,

Pr[AEOSP
l,n = H | T1] =

1

(l − 1)n−1
[(l − 1)n−2

+ (l − 2) ·

n−2
∑

i=1

(

n− 2

i

)

(l − 2)n−2−i]

3.3.3 Odd-Odd Alignment

The table starts from an odd location and the table size is
also odd, so ends in an odd location. Since the table starts
from an odd location the first block of the table is prefetched
by a block outside the table, thus is not prefetchable by the
current table. Also, the first block being odd prefetches
a block outside the table. Now, if the first access T1 is
conditioned then equation can be analyzed in two cases if
Tn = EOSP (T1) and Tn 6= EOSP (T1)

Pr[AEOSP
l,n = H

∣

∣T1] = Pr[AEOSP
l,n = H|Tn = EOSP (T1)]

· Pr[Tn = EOSP (T1)]

+ Pr[AEOSP
l,n = H|Tn 6= EOSP (T1)] · Pr[Tn 6= EOSP (T1)]

There are two components in this equation.

• When Tn = EOSP (T1), it would certainly cause a
cache hit. Also, since Tn cannot have a collision with
T1, it can only take l − 1 different values and not l.
Thus,

Pr[Tl,n = EOSP (T1)] =
1

l − 1

• When Tn 6= EOSP (T1). This happens with probabil-
ity 1 − (1/(l − 1)). A hit in the nth access occurs if
and only if Tn = EOSP (Ti) and 2 ≤ i ≤ n − 1. The
probability with which this happens is given by the
following equation.

Pr[AEOSP
l,n =H | Tn 6= EOSP (T1)] =

α

(l − 2)(l − 1)n−2
·

n−2
∑

i=1

(

n− 2

i

)

(l − 2)n−2−i

,where α is the number of prefetchable blocks.

◦ If T1 = t1 then Tn 6= t1. Thus, α = l − 1.

◦ If T1 6= t1 then Tn 6= T1, Tn 6= EOSP (T1) and
Tn 6= t1. Thus, α = l − 3.

3.3.4 Odd-Even Alignment

The table start from an odd location and have an even
length and thus ends in an even location. Since the table
starts from an odd location and ends in an even location the
first block and the last block cannot be prefetched and the
both of them prefetches a block outside the table. Thus the
probability equation can be written as

Pr[AEOSP
l,n = H | T1 = tl or T1 = t1] =

(l − 2)

(l − 1)n−1
·

n−2
∑

i=1

(

n− 2

i

)

(l − 2)n−2−i

The above equation is explained in the following way as since
T1 = tl or t1 and Tn 6= EOSP (T1), so the n − 2 remaining
accesses account for the summation and Tn can take (l− 2)
values as Tn 6= t1 and Tn 6= tl.
When T1 6= tl and T1 6= t1,

Pr[AEOSP
l,n = H

∣

∣T1 6= tl, T1 6= t1] =

Pr[AEOSP
l,n = H|Tn = EOSP (T1)] · Pr[Tn = EOSP (T1)]

+ Pr[AEOSP
l,n = H|Tn 6= EOSP (T1)] · Pr[Tn 6= EOSP (T1)]

There are two components in this equation.

• When Tn = EOSP (T1), it would certainly cause a
cache hit. Also, since Tn cannot have a collision with
T1, it can only take l − 1 different values and not l.
Thus,

Pr[Tl,n = EOSP (T1)] =
1

l − 1

• When Tn 6= EOSP (T1). This happens with probabil-
ity 1 − (1/(l − 1)). A hit in the nth access occurs if
and only if Tn = EOSP (Ti) and 2 ≤ i ≤ n − 1. The
probability with which this happens is given by the
following equation.

Pr[AEOSP
l,n =H | Tn 6= EOSP (T1), T1 6= tl, T1 6= t1] =

α

(l − 2)(l − 1)n−2
·
n−2
∑

i=1

(

n− 2

i

)

(l − 2)n−2−i

,where α is the number of prefetchable blocks.

◦ If T1 6= t1 then Tn 6= T1, Tn 6= EOSP (T1), Tn 6=
tl(cannot be prefetched) and Tn 6= t1(cannot be
prefetched). Thus, α = l − 4.

3.3.5 Even-Even Alignment

For this case, the table starts from an even location, have
an odd length and ends in an even location. So all the blocks
in the table can be prefetched. But the last block prefetches
a block outside the table. Thus the probability equation can
be given as

Pr[AEOSP
l,n = H | T1 = tl] =

1

(l − 1)n−2
·
n−2
∑

i=1

(

n− 2

i

)

(l − 2)n−2−i

here, T1 = tl and Tn 6= EOSP (T1), so the (n−2) remaining
accesses are responsible for the prefetching as in the previous
cases. Since Tn = tl is possible here and Tn 6= tl, so the (l−1)



blocks can be placed at location Tn When T1 6= tl,

Pr[AEOSP
l,n = H

∣

∣T1 6= tl] =

Pr[AEOSP
l,n = H|Tn = EOSP (T1)] · Pr[Tn = EOSP (T1)]

+ Pr[AEOSP
l,n = H|Tn 6= EOSP (T1)] · Pr[Tn 6= EOSP (T1)]

There are two components in the following equation.

• When Tn = EOSP (T1), it would certainly cause a
cache hit. Also, since Tn cannot have a collision with
T1, it can only take l − 1 different values and not l.
Thus,

Pr[Tl,n = EOSP (T1)] =
1

l − 1

• When Tn 6= EOSP (T1). This happens with probabil-
ity 1 − (1/(l − 1)). A hit in the nth access occurs if
and only if Tn = EOSP (Ti) and 2 ≤ i ≤ n − 1. The
probability with which this happens is given by the
following equation.

Pr[AEOSP
l,n = H | Tn 6= EOSP (T1), T1 6= tl] =

α

(l − 2)(l − 1)n−2
·

n−2
∑

i=1

(

n− 2

i

)

(l − 2)n−2−i

,where α is the number of prefetchable blocks.

◦ since Tn 6= T1, Tn 6= EOSP (T1) and Tn 6= tl(cannot
be prefetched). Thus, α = l − 3.

This section formulates the probability distributions for
the Even-Odd sequential Prefetcher and how it behaves when
cache blocks are arranged in various table alignments. These
probability distributions helps in the development of the
cache miss distribution. In the next section using the Kullback-
Leibler Divergence metric, we quantify the leakage for the
various table alignments for cache blocks using the Even-odd
Sequential Prefetcher.
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Figure 2: Cache miss distribution of sequential
prefetcher

4. ESTIMATING CACHE MISS DISTRIBU-

TION AND ANALYZING LEAKAGE IN

THE EOS PREFETCHER
In the previous section we analyzed the probability of

cache accesses resulting in a hit with EOSP and this is even-
tually utilized to construct the cache miss distribution and
also in quantifying information leakages using the Kullback-
Leibler Divergence.

4.1 Cache Miss Distribution
A cipher implementation when executed repeatedly, the

cache misses from these executions can be represented in

a cache miss distribution, which is a normal distribution
having a mean and a variance. In [9], the expected number
of cache misses in the nth access is calculated by,

E(Al,n) = 0 · (Pr[Al,n = H]) + 1 · (Pr[Al,n = M])

= 1− Pr[Al,n = H]

and the variance of cache misses in the nth access is

V (Al,n) = (1− Pr[Al,n = H]) − (1− Pr[Al,n = H])2

= Pr[Al,n = H]2 + Pr[Al,n = H]

The expectation of the number of cache misses after n
memory accesses are given by the recurrence equation as,

E(Mn) = E(Mn−1) + E(Al,n)

and

V (Mn) = V (Mn−1) + V (Al,n) + 2 · Cov(Mn−1, Al,n)

where Mn is the random variable denoting the number of
cache misses after n memory accesses. In profiled cache-
timing attack, whenever we attempt to predict a particular
key ki, the timing profile for the key ki needs to be built.
Since the timing information from a block cipher can be ana-
lyzed with the number of cache misses suffered by the execu-
tion, we are going to estimate the cache profile for ki. Cache
profile of ki is the variation of the number of cache misses by
varying input plaintext pi. So for the key ki, the cache miss
distribution by varying the values of pi gives the cache pro-
file for that particular key ki. Cache profiles for k1 with the
Even-Odd Sequential Prefetching styles with the size of table
(in terms of number of memory blocks) l = 16, nmax = 36
and cache line size δ = 16 for each of the four cases on
the alignment of the tables are illustrated in Figure 3. Fig-
ure 3 suggests that there is no deviation in cache profile for
the even-odd alignment as in Figure 3(a), while the remain-
ing alignments illustrated in Figures 3(b),3(c),3(d) is having
significant deviations. The correctness of our formal analy-
sis and the respective simulation results are verified using a
cache profiler in the following section.

4.2 Validation of the Cache Models
In this section we have checked the correctness of the

mathematical formulations of cache models using a cache
profiling tool Cachegrind 4. The assumptions we formulated
previously are provided by this tool platform. The source
code of Cachegrind was patched to support the even-odd
sequential algorithms described in Algorithms 2. The mod-
ified code of Cachegrind performs the even-odd sequential
prefetching. The table sizes as discussed in Section 3 can ei-
ther be even or odd. The cipher model used in the even sized
tables uses parameters as Γ = 1, l = 8, nmax = 8. The odd
sized tables uses parameters as Γ = 1, l = 7, nmax = 8. The
alignments of the tables in each case can again start from an
even or an odd location. The code is adjusted in each case
accordingly. The cache modeled is 2-way set associative with
δ = 32 and of size 16KB. The empirical distributions were
obtained after sampling 10, 000 executions of the cipher.

Figure 4 shows the cache profiles for key byte k1 obtained
from Cachegrind and the predicted ones for the same cipher
and same cache model with various table size and align-
ments. Figure 4(a) and Figure 4(d) has the same table sizes

4http://valgrind.org/docs/manual/cg-manual.html
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(a) EOSP with even-odd
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(b) EOSP with odd-odd
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(c) EOSP with even-even

 8.66

 8.68

 8.7

 8.72

 8.74

 8.76

 8.78

 8.8

 8.82

 8.84

 0  50  100  150  200  250

Ex
pe

ct
ed

 n
um

be
r o

f c
ac

he
 m

is
se

s

p1

(d) EOSP with odd-even

Figure 3: Cache Profiles for k1 with Even-Odd Sequential Prefetching Styles for Different Table Alignments
and l = 16, nmax = 36, δ = 16 with x−axis having the conditioned value and y-axis the number of cache misses
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(a) Cache Misses with even-odd
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(b) Cache Misses with odd-odd
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(c) Cache Misses with even-even
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(d) Cache Misses with odd-even

Figure 4: Predicted and Empirical Cache Profiles for k1 for Cipher Model Γ = 1, nmax = 8

l = 8 but differs in their table alignments. While Figure 4(b)
and Figure 4(c) have table size l = 7 again differing in their
alignment. The expected number of cache misses in the pre-
dicted cache profile in Figure 3 and the empirical ones in
Figure 4 follows the same pattern. In Figure 4, the empiri-
cal cache profile is plotted in blue lines while the predicted
cache profile is plotted using the red dotted line using the
same set of parameters as explained above and comparison
of the cache profiles can be easily performed. It is clearly
evident from the figures that the empirical cache profiles ob-
tained from the cache profiler closely follows the predicted
cache profile following our formal analysis.

5. INFORMATION LEAKAGE IN A TIMING

PROFILE
In order to quantify the leakage due to hardware prefetch-

ers in the context of profiled cache-timing attacks, the au-
thors in [9] uses a metric to measure leakage in a timing
profile: the symmetric version of Kullback-Leibler diver-
gence [7]. Kullback-Leibler divergence is used as a measure
of the difference between two probability distributions and

in this paper we use the divergence in order to quantify
the amount of deviations in the timing profile. Assuming
a noise-free timing profile, every deviation from the average
encryption time, results in information leakage. Therefore
a profile with larger number of deviations would result in
more information leakage.

The metric used is as follows: Equation 1 computes the
symmetric KL divergence between two distribution Fk1,i

and
Fk

1,i′
.

D(Fk1,i
, Fk

1,i′
) = D(Fk1,i

||Fk
1,i′

) +D(Fk
1,i′

||Fk1,i
) (1)

, where

D(Fx||Fy) =
∑

j

Fx(j) log
Fx(j)

Fy(j)

j ranges from minimum to maximum number of cache misses.
The minimum number of cache misses is always 1 due to
compulsory miss and the maximum can be either n or l(the
greater between the two).

Total information leakage (D(CP(k1)) for the cache profile
for k1, is the value of D(Fk1,i

, Fk
1,i′

) and is added for every
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Figure 5: Leakage for k1 with Various Table Alignments as the Table Size Increases (nmax = 36)

possible pair of distributions. Therefore,

D(CP(k1)) =
∑

∀pairs of

i and i′,i6=i′

D(Fk1,i
, Fk

1,i′
)

The Kullback Leibler divergence is zero when i and i′ are on
the same cache line as the shifts in the cache profile becomes
uncertain. Thus higher the value of divergence higher is the
leakage of information.

5.1 Analysis of Information Leakage
The leakages that we obtain by applying the metric on

the cache profiles reveal that for the even-odd table align-
ment the information leaked is zero, because the line ob-
tained is a straight line and any shift in the timing profile
goes undetected in this case. On the contrary, the informa-
tion leakages for the odd-even table alignment is the max-
imum among these four table alignments. The other two
cases, namely, the odd-odd and the even-even table align-
ments show the same amount of information leakage which
is higher than the even-odd alignment and lesser than the
odd-even alignment.

As the size of the table(l) increases, the Kullback-Leibler
divergence due to prefetching reduces. Figure 5 shows the
variations in leakages for the various table alignments as the
table size increases. The graphs plotting the information
leakages for these four different table alignments as the size
of table changes shows that for small table sizes the infor-
mation leakage is huge and as the size increases the leakage
reduces. Now, the information leakage for the even-odd ta-
ble alignment is always zero and does not change though the
table size changes. Also in Figure 5(d),5(c) the leakages in
the even-even and odd-odd table alignments is lesser than
the odd-even alignment. Thus if we can actually align the
tables in even-odd position it will result in zero leakage or if
we are having an odd-even alignment then try to have a large
table size so as to make information leakage the minimum.

6. CONCLUSION
This paper considers a variant of sequential data prefetch-

ing algorithm named even-odd prefetching. The information
leaked due to this prefetcher is formally analyzed for profiled
cache-timing attacks. The analysis shows that the alignment

of tables i.e., their starting and ending locations do have a
great impact on the leakage of information. We have also
observed that for a particular table alignment namely when
the table start at an even memory block and ends at an odd
memory block, there is no information leaked. This analysis
shows that an implementer of a block cipher should consider
the alignment of the tables in memory in order to eliminate
leakage due to this prefetcher.
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