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Why to protect the OS kernels?

Operating systems (and their kernels) are everywhere

Applications rely on the OS kernels
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Operating systems are vulnerable

New vulnerabilities reported every year
§ CVE-2013-2094 (S. Vogl et al., 2014)
§ CVE-2014-3153 (TowelRoot)
§ CVE-2015-3636 (PingPongRoot)

Adversaries may
§ Read from the memory regions for the kernel
§ Write to the memory regions for the kernel

With the capabilities,
§ Hiding Processes, files, or network connections
§ Privilege escalation
§ Execute their code while the CPU in the kernel mode
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A powerful type of attack: code-injection

Handling a read system call
§ Supervisor call handler
à sys_read

§ The address of sys_read written in 
the system call table

Attackers can
§ Write their code into the kernel’s memory
§ Manipulate the system call table

Consequence
§ mal_sys_read replaces sys_read
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Existing mechanisms effective

Privileged eXecute Never (PXN)
§ A flag in the page table entries
§ MMU prevents the execution of memory pages with PXN=1 

Page Table Protection ⇒ No Code-Injection Attack
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Kargos overview

Goal
§ Mitigate the kernel code-injection attacks with minimal performance cost

Threat Model
§ Adversaries can read from/write to the kernel memory arbitrarily

Mechanism
§ Dedicated hardware support
- Traffic Monitor
- Trace Monitor

§ Minimal kernel instrumentation
- Special execution traces
- Special register protection
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The four rules to detect the attacks
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The four rules to detect the attacks
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The four rules to detect the attacks
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The four rules to detect the attacks
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Why the four rules prevent the attacks

R1: attacker’s code should be outside the physical regions
R2 & R3: PC points to the virtual code regions
R4: Virtual code regions never mapped to the attacker’s code
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Trace monitoring

Need to monitor the virtual addresses that the CPU jumps to

Our Implementation:
§ Parses the ARM’s PTM packets
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Traffic monitoring

Need to know the physical addresses that the CPU writes to

Our implementation:
§ Examines the traffic complying with the AXI protocol

Naturally detect the violations of R1
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Rule 2: Kernel entrance

The gateway code blocks

Vector table is inside the physical code regions
Protection of the SCTLR and VBAR: Kernel Instrumentation
§ Check the values before executing the special instructions
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Rule 3: Indirect branches

Challenge: Mode recognition
§ In which CPU mode a trace is generated?
§ Jump to gateway code block indicates the kernel enter
Answer: special traces in the exit code blocks
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msr SPSR_fsxc, r1
and r3, r1, #31
cmp r3, #16
subeq pc, pc, #4
restore_context
movs pc, lr
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Rule 4: Mappings

Memory management unit uses:

Partial page table protection
§ Small number of (<10) PGD entries for virtual code region translations
§ Traffic Monitor can detect the modifications
TTBR protection: Kernel Instrumentation
§ Check the PGD entries before updating the TTBRs
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Prototype implementation details

Implemented all hardware components in Verilog HDL
Used Xilinx ZC702 evaluation kit to prototype
Operational frequency:
§ Processor core: 222MHz
§ Kargos hardware modules: 80MHz

Kernel instrumentations
§ Six for SCTLR updates
§ Four for TTBR updates
§ Two exit code blocks
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Evaluation: Security

Implemented three Proof-of-Concept(PoC) attacks using
a real-world vulnerability (CVE-2014-3153)
§ Kernel code modification
§ Virtual code region remapping
§ Redirecting the kernel execution to a attacker’s code block

Targeting Linux kernel 3.8.0 for Android 4.2

All these three attacks detected
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Evaluation: Performance 1

LMBench result to show the impact on OS services
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1 msr SPSR_fsxc , r1

2 and r3, r1 , #31

3 cmp r3, #16

4 subeq pc, pc , #4

5 restore_context

6 movs pc, lr ; this may switch the mode

Figure 4: This shows how the kernel is modified to generate
a special control-flow in an exit code block. After updating the
SPSR with the value in r1, we added three instructions to check
the value in r1 and generate an indirect jump if the mode field
is set to the user mode.
cannot be the signs of mode switches from privileged to user be-
cause the execution of the block may not always cause such a mode
change. For example, the exit code blocks of the Linux kernel for
ARM CPUs use movs instructions to switch the CPU mode to the
user mode only when the mode field of the saved program state
register (SPSR) is set to user. If not, the movs instruction does not
change the CPU mode to user. For this reason, we augmented the
kernel to follow a special control flow only when it returns to the
user mode, whereas it follows the original control flow otherwise.
In detail, the kernel checks the value of the SPSR before execut-
ing the movs instruction and executes an additional indirect jump
instruction only when the mode field of the SPSR is set to user.
This additional instruction generates a trace that Mode Tracker can
consider as the sign of the mode change event. With this additional
signature, Mode Tracker can recognize the mode switch from priv-
ileged to user. Figure 4 shows how the signature for a Linux kernel
running on an ARM processor is generated.
3.2.3 Protection of the Mappings

Although we could avoid protecting all page tables in the target
system, Kargos has to protect the page table entries which map the
virtual code regions into the physical code regions, due to the Ad-
dress Translation Redirection Attack (ATRA) [11]. To protect these
entries (R4), we make use of TrafficMonitor to examine every ac-
cess to the entries. However, examining all these entries in the tar-
get system is not desirable as most systems maintain a set of such
entries for each process. Instead, Kargos protects only the entries
of the page tables currently in use. In specific, the kernel checks
the page table entries of a process whenever it becomes active. The
kernel can check all such events by executing the checking instruc-
tions before executing the special instruction to update the active
page table. Using the hardware support for atomic code blocks,
we can also ensure that the kernel never uses a page table without
checking the mappings from virtual into physical code regions. In
the atomic code blocks that update the registers, the kernel also pro-
vides TrafficMonitor with the physical addresses of the new entries
that should be protected from the modifications. In addition, the
code block is implemented to comply with the protocol presented
in Section 3.1.2 to be resilient to the fake reporting attack. Figure 3
shows how the code block generates a report which TrafficMonitor
would accept as a genuine one.
3.2.4 Code Protection

To detect violations of R1, the kernel should examine all mem-
ory accesses to the physical code regions. Although kernels can
rely on the MMU to examine the accesses and detect malicious
modifications, this requires the kernel to have the means to protect
the integrity of all page tables in the system. Otherwise, attackers
would corrupt the page tables to deceive the MMU and modify the
physical code regions without being detected [6, 8]. Kargos does
not require the entire page tables to be protected, as it can detect
the write accesses to the physical code regions with their physical
addresses, using TrafficMonitor.

Name Baseline Kargos
null syscall 0.98µs 1.07µs (0.92%)
open/close 18.39µs 18.15µs (-1.28%)
select 4.58µs 4.57µs (-0.11%)
sig. handler install 2.81µs 2.82µs (0.11%)
sig. handler overhead 9.91µs 10.55µs (6.42%)
pipe 40.89µs 43.23µs (5.72%)
fork+exit 2853.15µs 2838.60µs (-0.51%)
fork+execve 9279.8µs 9159.16µs (-1.3%)
page fault 4.34µs 4.45µs (3.63%)
mmap 84.7µs 84.9µs (0.24%)

Table 1: LMBench results

4. EVALUATION
To evaluate the effectiveness and the efficiency of Kargos, we

have implemented a full-system prototype on the Xilinx ZC 702
evaluation board which includes Xilinx Zynq Z-7020 [17], on which
an ARM-based system can be developed. the hardware modules are
developed in Verilog HDL and mapped on the FPGA. Since the tar-
get system employs ARM NIC-301 AXI network interconnect, all
the modules in Kargos are also designed to comply with the corre-
sponding ARM AMBA 3.0 specification. Mainly due to the speed
limit of FPGA, we configured Kargos to operate at 80 MHz, and
also scaled down the clock speed of the target system to 222 MHz,
complying with the performance ratio between the host and the co-
processors in most SoC platforms such as application processors
of modern smartphones [18].

On top of this SoC, we ran Android 4.2.2 with the Linux ker-
nel 3.8.0 from the iVeia’s git server [19] as the operating system.
While we used the Android framework as it is, we modified the
Linux kernel in order to implement the atomic code blocks for the
special instructions. Specifically, we enclosed and relocated two
types of instructions to secure the kernel entrances and the address
translations, as presented in Section 3.2.1 and Section 3.2.3, respec-
tively. To secure the entrances, we created six atomic code blocks
for the instruction modifying SCTLR. As the baseline system does
not use VBAR to calculate the addresses, we did not need to pro-
tect it from malicious modifications. To protect the mappings, we
enclosed four instructions modifying Translation Table Base Reg-
ister (TTBR), which contains the base address of the page global
directory in use. Because the kernel does not contain any special
instructions for accessing PTM, we did not consider the case.

4.1 Performance
To evaluate the performance overhead that Kargos introduces,

we initially used LMBench [20] to measure the performance of the
operating system services. We used the script that is included in
the benchmark suite to assess the performance impact on the la-
tencies of the operating system services, as shown in Table 1. The
reported values are the averages of 10 runs. As shown in the table,
the performance impact of Kargos was negligible.

In addition to the microbenchmarks, LMBench, we also ran SPECint
2006 to evaluate the impact of our scheme on user-level applica-
tions. As shown in Table 2, the performance impact on SPEC is
negligible. This suggests that our scheme would not degrade CPU-
intensive workloads running as user-level applications.

Lastly, we ran five real-world Android benchmarking applica-
tions as shown in Table 3. All the results presented here represent
the average values over 10 runs. As can be seen in the table, Kargos
places less than 1% computational loads on average upon the target
system, thanks to our architectural supports.

4.2 Security
As described in Section 2, we consider an attacker who exploits
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Evaluation: Performance 2

Application benchmarks for the comparison
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Name Baseline Kargos
400.perlbench 12097.99s 12121.52s (0.19%)
401.bzip2 7284.54s 7274.29s (-0.14%)
403.gcc 2420.82s 2429.91s (0.38%)
445.gobmk 13412.38s 13542.57s (0.97%)
456.hmmer 15327.28s 15385.06s (0.38%)
458.sjeng 17000.11s 17051.94s (0.3%)
462.libquantum 42659.18s 42753.94s (0.22%)
464.h264ref 18785.86s 18841.65s (0.3%)
471.omnetpp 10334.19s 10382.46s (0.47%)
473.astar 7717.71s 7684.35s (-0.43%)
483.xalancbmk 11235.73s 11257.41s (0.19%)

Table 2: SPECint 2006 results. Among twelve benchmarks in
SPECint 2006, our baseline system could not run 429.mcf due
to the lack of memory.

Name Baseline Kargos
RL 607.90 610.82 (0.48%)
CF-Bench 531.80 527.80 (0.75%)
GeekBench 67.20 67.00 (0.30%)
Linpack-single 9.01 8.96 (0.64%)
Vellamo-metal 121.80 121.40 (0.30%)

Table 3: Android benchmark results.

a vulnerability of the kernel to acquire the capability of accessing
the victim system memory arbitrarily in order to perform the ker-
nel code injection attacks. For subverting our target system, such
attackers can exploit a real-world vulnerability of Linux kernel,
which has been reported as CVE-2014-3153 [2]. To test the effec-
tiveness of Kargos, we wrote three Proof-of-Concept (PoC) attacks
exploiting the vulnerability because we could not find any publi-
cally available kernel code injection attack on ARM-based systems
leveraging the vulnerability. The first attack aims to execute its
own code through modifying the physical memory regions, and the
second one writes to its own page table to remap the virtual code
regions. As both of them generate write attempts to the memory
regions that the TrafficMonitor is monitoring, Kargos was able to
detect the attacks without difficulty. The last attack is designed to
hijack the kernel execution flow to already-injected code without
modifying the kernel code regions or the page tables for the vir-
tual code regions. As the hijacking inevitably causes a jump to
addresses outside the virtual code regions, the TraceMonitor raises
an alarm when it receives the trace that corresponds to the jump
from the PTI. It is worth noting that the only difference between
our PoC attacks and the publically available examples of kernel
rootkits on packetstormsecurity.com, which inject their code to the
kernel, are the way how they achieve the capability of accessing
the kernel memory. While the public examples are implemented as
kernel modules to manipulate the kernel code and data, ours exploit
a real-world vulnerability of the kernel to achieve the capability.

5. LIMITATIONS AND FUTURE WORK
Code Reuse Attacks. While code injection has been a common

way of control-flow hijacking, it has been lately discovered [21,
22] that adversaries can hijack the kernel execution flow without
executing injected code in privileged mode at all. Instead, the ad-
versaries can try a different breed of attacks, known as code reuse
attacks (CRAs), where they reuse a set of kernel code snippets
to implement the functionality they want, and redirect the execu-
tion flow to their chain of code snippets. Being designed to detect
the execution of injected code, Kargos is not capable of catching
CRAs. However, this limitation should not undermine the efficacy
of Kargos for two reasons. First, the attackers cannot undermine

Kargos even if they have successfully executed their CRA payload.
Second, Kargos would be able to combined with the previously
proposed mechanisms to mitigate the CRAs using the trace inter-
faces [23, 24]. While these mechanisms rely on the OS kernel to
make use of the PTIs, Kargos would enable them to use the PTIs
without relying on the kernel and to monitor the traces of the ker-
nel.

Kernel Modules. Modern kernels are allowed to load the ker-
nel modules to extend their code at runtime. Although the current
design of Kargos assumes that the code regions remain unchanged,
the design can be enhanced to allow the target kernel to load the
modules. In addition, it would be possible for the enhanced Kar-
gos to decline an attempt to extend the kernel with a maliciously
crafted module as long as Kargos has a set of cryptographic hashes
of the known good modules. In order to load a kernel module, the
kernel should send a request to Kargos to adjust the current virtual
code regions, physical code regions and page tables. Otherwise the
execution of the extended code will raise an alarm. Upon receiv-
ing the request, Kargos will firstly include the module image to the
physical code regions to detect the attempt to modify the image.
Consequently, the image becomes neither writable nor executable
during the verification process through the hash. Once the module
is confirmed to be a known-good one, Kargos then checks the im-
age again to find if it contains the special instructions. After this
verification process, Kargos can safely extend the virtual code re-
gions to permit the CPU to execute the kernel module.

6. RELATED WORK
Page Table Protection As mentioned in Section 1, several mech-

anisms [6, 7, 8, 9, 10] have been proposed to protect the page ta-
ble utilizing the recent hardware supports such as PXN or SMEP.
By protecting the page tables, they could detect the kernel code
injection attacks effectively, but they inevitably introduced non-
negligible performance overhead. Compared to these mechanisms,
Kargos can defeat the attacks with smaller performance overhead,
by avoiding the protection the entire pare tables.

Hypervisor-based Approaches With the higher privilege than
the OS kernels, hypervisors in general are capable of investigat-
ing the kernel memory and intervening the kernel events. Using
these capabilities, many mechanisms have been proposed to pro-
tect the kernel with the hypervisors. Among them, SecVisor [25]
and NICKLE [26] are closely related to our work in that their main
goals are also to detect kernel code injections. SecVisor protected
and augmented the page tables whenever the CPU enters or ex-
its the kernel to simulate the PXN/SMEP, as those supports were
not available then. NICKLE emulated the Havard Architecture,
where the code memory and data memory are strictly separated,
by intervening the instruction fetches. Due to the lack of hard-
ware supports, these mechanisms have higher performance over-
head when compared with Kargos or the recent mechanisms using
PXN/SMEP.

Snapshot Analyses Another direction of the mechanisms to pro-
tect the kernel has been the Snapshot Analysis. Using either a
dedicated hardware or hypervisor, it is possible to implement a
monitor which acquires the snapshots of the kernel memory pe-
riodically and analyzes them to detect the anomalies. The earlier
ones have focused on protecting the kernel code from being cor-
rupted [27], but recent ones have checked the Control-Flow In-
tegrity (CFI) [28, 29], by examining the function pointers in the
kernel memory. These mechanisms would be able to detect the
code-injection attacks if they corrupt the function pointers, but very
recent work [30] suggested that a dynamic hook, which hijacks
the execution flow without persistently altering any control data,
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nel modules to extend their code at runtime. Although the current
design of Kargos assumes that the code regions remain unchanged,
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modules. In addition, it would be possible for the enhanced Kar-
gos to decline an attempt to extend the kernel with a maliciously
crafted module as long as Kargos has a set of cryptographic hashes
of the known good modules. In order to load a kernel module, the
kernel should send a request to Kargos to adjust the current virtual
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physical code regions to detect the attempt to modify the image.
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injection attacks effectively, but they inevitably introduced non-
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ing the kernel memory and intervening the kernel events. Using
these capabilities, many mechanisms have been proposed to pro-
tect the kernel with the hypervisors. Among them, SecVisor [25]
and NICKLE [26] are closely related to our work in that their main
goals are also to detect kernel code injections. SecVisor protected
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its the kernel to simulate the PXN/SMEP, as those supports were
not available then. NICKLE emulated the Havard Architecture,
where the code memory and data memory are strictly separated,
by intervening the instruction fetches. Due to the lack of hard-
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PXN/SMEP.
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dedicated hardware or hypervisor, it is possible to implement a
monitor which acquires the snapshots of the kernel memory pe-
riodically and analyzes them to detect the anomalies. The earlier
ones have focused on protecting the kernel code from being cor-
rupted [27], but recent ones have checked the Control-Flow In-
tegrity (CFI) [28, 29], by examining the function pointers in the
kernel memory. These mechanisms would be able to detect the
code-injection attacks if they corrupt the function pointers, but very
recent work [30] suggested that a dynamic hook, which hijacks
the execution flow without persistently altering any control data,
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Conclusion

Detection of kernel code injection attacks is not expensive
§ With appropriate hardware supports

Hardware monitors can examine CPU states
§ Mode of execution (privileged/user)
§ Special register values

Can this mechanism also applied for the detection of 
the code-reuse attacks?
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Thank you!
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