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Tutorial Outline

13:00 – 13:30 Secure Processor Architectures
13:30 – 14:00 Trusted Execution Environments
14:00 – 14:10 Break
14:10 – 14:30 Hardware Roots of Trust
14:30 – 14:50 Memory Protection
14:50 – 15:00 Multiprocessor and Many-core Protections
15:00 – 15:10 Break
15:10 – 15:50 Side-Channels Threats and Protections

including Speculative Execution Threats
15:50 – 16:20 Principles of Secure Processor Architecture Design
16:20 – 16:30 Ending
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The Book

Jakub Szefer, ”Principles of Secure Processor
Architecture Design,” in Synthesis Lectures on
Computer Architecture, Morgan & Claypool
Publishers, October 2018.

http://caslab.csl.yale.edu/books/
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Secure Processor Architectures
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Types of Security Related Architectures
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Brief History of Secure Processor Architectures

Starting in late 1990s or early 2000s, academics have shown increased interest in secure processor 
architectures:

XOM (2000), AEGIS (2003), Secret-Protecting (2005), Bastion (2010), 
NoHype (2010), HyperWall (2012), CHERI (2014), Sanctum (2016),

Keystone (about 2017), MI6 (2018)

Commercial processor architectures have also included security features:

LPAR in IBM mainframes (1970s), Security Processor Vault in Cell Broadband Engine (2000s), 
ARM TrustZone (2000s), Intel TXT & TPM module (2000s), Intel SGX (mid 2010s), 
AMD SEV (late 2010s)
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Baseline (Unsecure) Processor Architecture

A simplified view of a processor and the software stack in a general-purpose computer:
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Baseline (Unsecure) Processor Hardware

Typical computer system with no secure components nor secure processor 
architectures considers all the components as trusted:
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Baseline (Unsecure) Processor Software

Typical computer system uses ring-based protection scheme, which gives most privileges
(and most trust) to the lowest levels of the system software:
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https://commons.wikimedia.org/wiki/File:Priv_rings.svg
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Potential Attack Vectors

Hardware and software can be attacked through numerous attack vectors:

Hardware
on

Hardware
Attacks

Software
on

Hardware
Attacks

Hardware
on

Software
Attacks

Software
on

Software
Attacks

Tutorial on Principles of Secure Processor Architecture Design 
© Jakub Szefer (ver. HPCA 2019)

Most of computer
security threats are
software on software
attacks

11

Abuses of software-
hardware interface or
lack of configuration
checks allow software
actions to result in
physical modifications
to hardware

Hardware trojans and
physical probing

Hardware trojans and
hardware snooping
on executing code



Software on Software Attacks

Most computer security attacks are software attacks, typically targeting other software running on 
the same computer, or targeting the OS or Hypervisor.

E.g., Return-Oriented Programming (ROP):
• Does not require loading attackers' code onto victim machine
• Requires modification of the call stack
• Uses “gadgets” present already on computer as part of some software or library

General software attack types:
• Control flow modification
• Data modification
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Software on Hardware Attacks

Software can be leveraged to attempt to modify physical properties of the hardware.

Rowhammer attack:
• Repeated accesses to DRAM rows can 

cause bits to flip in adjacent DRAM rows
• Leverage usual load or store instructions, 

but at a very high rate
• Can be triggered by DMA from devices 

as well
• Use attack to change protection bits 

in a page table, etc.
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Software on Hardware Attacks

Software can be leveraged to attempt to modify physical properties of the hardware.

CLKScrew attack:
• Abuses Dynamic Voltage and Frequency 

Scaling (DVFS) features
• Adjust configuration beyond normally

allowed operating points
• Inject faults into system

• Confidentiality – inject faults and use differential 
fault attacks to get secret key

• Integrity – inject faults to get data verification
to pass

Availability – crash system with too many faults
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Hardware on Hardware Attacks

Require hardware modification (hardware trojans) or physical proximity

Hardware trojans:
• Hardware is modified to add hidden functionality

• In source code, 3rd party IP modules, malicious 
CAD tools, at the foundry, physically 
after manufacturing

• Modify hardware behavior or extract secrets

Other attack categories:
• Physical extraction after attack (e.g. probing)
• Side channels: power, EM, thermal
• Fault injection (using dedicated physical equipment)
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Hardware on Software Attacks

Leverage hardware modification to change behavior of the software or extract some secrets.

Exfiltration of software secrets:
• Leverage hardware’s access to registers

and memory to read out data
• Example attacks with snooping on memory bus
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Attacking Hardware without Physical Access

Possibilities for hardware attacks with dedicated tools and lots of money are infinite.
However, software on hardware attacks requiring no physical access are possible today.

• Rowhammer

• CLKScrew

• …

• Meltdown

• Spectre

• …

Abusing Dynamic Voltage and Frequency Scaling (DVFS) features can allow attacker
to introduce faults into a system.

Repeated accesses to DRAM rows can cause bits to flip in adjacent DRAM rows, e.g.
to change protection bits in a page table.

Out-of-order execution and incorrect checking of protection bits + cache side channel
attacks can leak information about protected memory contents.

Speculative execution + cache side channel attacks can be used to extract data from
an application.
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Protecting from Software and Hardware Attacks

Secure Processor Architectures add new hardware and software features 
to provide Trusted Execution Environments (TEEs) wherein software 
executes protected from some of the software and hardware threats.

• Enhance general-purpose processor 
with new protection features

• Provide new or alternate privilege levels
• Utilize software and hardware changes
• Facilitate attestation of the protected software
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New Privilege Levels

Modern computer systems define protections in terms of privilege level or protection rings,
new privilege levels are defined to provide added protections.

Ring 3 Application code, least privileged. 
Rings 2 and 1 Device drivers and other semi-privileged 

code, although rarely used. 
Ring 0 Operating system kernel. 
Ring -1 Hypervisor or virtual machine monitor (VMM), 

most privileged mode that a typical system 
administrator has access to.

Ring -2 System management mode (SMM), 
typically locked down by processor manufacturer 

Ring -3 Platform management engine, retroactively named “ring -3”, 
actually runs on a separate management processor. 

Image:
https://commons.wikimedia.org/wiki/File:Priv_rings.svg
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Extend Linear Trust with New Protection Levels

The hardware is most privileged as it is the lowest level in the system.

• There is a linear relationship between
protection ring and privilege (lower ring
is more privileged)

• Each component trusts all the software 
“below” it
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Security levels from a lattice:

Add Horizontal Privilege Separation

New privileges can be made orthogonal to existing protection rings.

• E.g. ARM’s TrustZone’s “normal” and “secure” worlds
• Need privilege level (ring number)

and normal / secure privilege

Image:
https://commons.wikimedia.org/wiki/File:Priv_rings.svg
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Breaking Linear Hierarchy of Protection Rings

Examples of architectures that do and don’t have a linear relationship between 
privileges and protection ring level:
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Simplified schematic of Intel SGX architecture and the protected enclaves.
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ME

Hypervisor (VMM)

Example Secure Architecture: Intel SGX
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Simplified schematic of AMD SEV architecture and the protected Virtual Machines.
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Example Secure Architecture: ARM TrustZone

Simplified schematic of ARM TrustZone architecture and the normal and protected worlds.
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Trusted Processor Chip Assumption

Key to most secure processor architecture designs is the trusted processor chip assumption.
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Trusted Computing Base

Trusted Computing Base, or TCB, is the sum total of all the hardware and software 
which work together to realize the protections offered by the system.

• TCB is trusted
• TCB may not be trustworthy, if is not verified or is not bug free

TCB contains:
• All trusted hardware – typically the processor chip
• All trusted software – some software levels may be untrusted (e.g. OS in SGX)
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Small TCB Assumption

To prevent TCB problems, TCB should be small; it is assumed that a smaller hardware and software 
TCB implies better security.

The small TCB assumption is derived from:
• Less software code means it can be audited and verified
• Less hardware code means it can be audited and verified

Limitations in today’s security verification tools necessitate the small TCB assumption.
• Difficult to verify large code bases (both hardware and software)
• Hard to define all security policies for large, complex systems
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Open TCB Assumption

Kerckhoffs’s Principle from cryptography can be applied to secure architectures:

• Operation of the TCB should be publicly known and should have no secrets
• Only secrets are the cryptographic keys
• Prevent security-by-obscurity
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Today’s Limitations of Secure Architectures

Threats which are outside the scope of secure processor architectures:

• Bugs or Vulnerabilities in the TCB 
• Hardware Trojans and Supply Chain Attacks 
• Physical Probing and Invasive Attacks

Threats which are underestimated when designing secure processor architectures:
• Side Channel Attacks 

TCB hardware and software is prone to
bugs just like any hardware and software.

Modifications to the processor after the
design phase can be sources of attacks.

At runtime hardware can be probed to
extract information from the physical
realization of the chip.

Information can leak through timing,
power, or electromagnetic emanations
from the implementation
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Other Security Related Architectures

Tutorial on Principles of Secure Processor Architecture Design 
© Jakub Szefer (ver. HPCA 2019)

Processor Chip

$

Uncore

Core
$ $

Core
$ $…

Accelerator

31

Secure Processor
Architecture

Processor Chip

Secure Co-Processor
or HSM Architecture

Co-Processor Chip

Security

Crypto
…

Crypto

Sec. I/O

…
PUFs

uProc

…

Cryptographic
Accelerators

Processor Chip

Crypto

Network Card
Crypto

I/O, Mem.,
or Dev.

Security
Monitor

Processor Chip

Monitor
Crypto



Secure Co-Processors or HSMs

• Hardware security modules (HSMs) are dedicated devices
for performing cryptographic operations or running secure code

• Can be attached to the system bus such as PCIe, e.g. IBM cards
• Can be integrated into SoC design and attack to AXI

or similar bus

• Discrete HSMs typically have tamper resistant and tamper 
evident coatings, or have battery for backup power

• Secure co-processors on SoC may lack battery backup, 
may have lesser physical tamper dectection

Images:
https://www-03.ibm.com/security/cryptocards/pciecc/overview.shtml
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Intel – TPM and TXT

Co-processor developed by IBM and others

• Model: TPM v1.2
• Co-processor attaching to chipset

• Some features advertised by the vendor:
• crypto engine

The Trusted Platform Module (TPM) is often
integrated with other processor security features, e.g.,
Intel’s Trusted Execution Technology (TXT)
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Inside Secure – Programmable Root-of-Trust

Co-processor IP developed by Inside Secure

• Model: Programmable Root-of-Trust
• Co-processor attaching to standard buses

• Some features advertised by the vendor:
• crypto accelerators
• can be synthesized with SypherMedia

Library (SML) circuit camouflage technology
and anti-reverse engineering

• side channel protection
• anti-tampering
• secure debug
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Camouflaging can be added to
almost any design as it is at the
level of logic gates.

Thanks to Benoît De Dinechin
for suggesting to add SoC security solutions.



Rambus (Cryptography Research, Inc.) – CryptoManager

Co-processor IP developed by Cryptography Research, Inc. (CRI)

• Model: CryptoManager Root of Trust RT630
• Independent hardware security block

• Some features advertised by vendor:
• crypto accelerators and DPA resistant crypto
• “entropic array logic” to thwart reverse engineering
• canary logic for protection against glitching

and overclocking
• not susceptible to Spectre and Meltdown
• secure memories
• anti-temper
• secure debug
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Probably due to simple RISC-V
without speculation. Example of
trading performance for security.

Thanks to Benoît De Dinechin
for suggesting to add SoC security solutions.



ARM – CryptoCell

Co-processor IP developed by Inside Secure

• Model: CryptoCell-713
• Co-processor attaching to ARM’s buses

• Some features advertised by the vendor:
• crypto accelerators
• side channel protection
• supports Chinese crypto algorithms: 

SM2 (public key alg. based on elliptic curves),
SM3 (hash function), and SM4 (block cipher)
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Synopsys – DesignWare tRoot Vx

Co-processor IP developed by Synopsys

• Model: tRoot V500 Hardware Secure Module
• Co-processor attaching to AMBA bus

• Some features advertised by the vendor:
• crypto accelerators
• secure debug
• can act as slave device or master device

for secure boot of the main processor
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Not just platform to run TEE, but
security manager for the whole
system.

Thanks to Benoît De Dinechin
for suggesting to add SoC security solutions.



Microsoft – Pluton Security Subsystem

Security subsystem for Azure Sphere 
Microcontrollers (MCUs)

• Model: Pluton Engine
• Co-processor attaching to AHB bus

• Some features advertised by the vendor:
• crypto accelerators
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Other Security Related Architectures
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Cryptographic Accelerators

• Devices for accelerating encryption or decryption
• Network packets
• Disk or other storage

• Can be integrated into the I/O device
• Network card with crypto engine

Images:
http://www.lannerinc.com/products/x86-network-appliances/network-processing-cards/ncs-mtx401
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Other Security Related Architectures
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Google – Titan

Discrete chip for snooping on SPI bus and protecting Flash memory with boot ROMs

• Model: Titan
• Interposes on SPI communication

to monitor status of flash memory
with boot ROMs

• Some features advertised by the vendor:
• crypto accelerators
• attack detection (glitch, laser, thermal, 

voltage, or physical probing)
• boot-time and live-status checks
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for links to HotChip slides about Titan

Very important but different from code attestation; focuses
on TRNG integrity, clock signal integrity, etc.



Trusted Execution Environments
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Trusted Execution Environments and TCB

The goal of Trusted Execution Environments (TEEs) is to provide protections for 
a piece of code and data from a range of software and hardware attacks.

• Multiple mutually-untrusting pieces of protected code can run on a system at the same time

The Trusted Computing Base (TCB) is the set of hardware and software that is responsible
for realizing the TEE:

• TEE is created by a set of all the components in the TCB
• TCB is trusted to correctly implement the protections
• Vulnerability or successful attack on TCB nullifies TEE protections
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TEEs and Software They Protect

Different architectures mainly focus on protecting Trusted Software Modules (a.k.a. enclaves) 
or whole Virtual Machines or containers.
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Protections Offered by Secure Processor Architectures

Security properties for the TEEs that secure processor architectures aim to provide:

• Confidentiality
• Integrity
• Availability (next slide)

The C. I. A. properties are with respect to components or participants of the system, commonly 
named Alice, Bob, Charlie, Eve, Malory, etc., in different protocols

Confidentiality and integrity protections are from attacks by other components (and hardware) not in 
the TCB.  There is typically no protection from malicious TCB.

Confidentiality is the prevention of the disclosure of secret or sensitive
information to unauthorized users or entities.

Integrity is the prevention of unauthorized modification of protected
information without detection.
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Protections offered by Secure Processor Architectures

Protections not typically offered:

• Availability

Single processor is not able to provide availability protection (e.g. anybody can unplug computer 
from power source).

Security vs. Reliability:
Reliability protections assume random faults or errors, security protections assumes that reliability, 
i.e. protection from random faults or errors, is already provided by the system, and focuses instead 
on the deliberate attacks by a smart adversary. 

Availability is the provision of services and systems to legitimate users
when requested or needed.
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Sample Protections Categorized by Architecture

Secure processor architectures break the linear relationship (where lower level 
protection ring is more trusted):
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Protecting State of the Protected Software

Protected software’s state is distributed throughout the processor.  All of it needs to be protected 
from the untrusted components and other (untrusted) protected software.
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Enforcing Confidentiality through Encryption

Symmetric key cryptography should be used to protect data going off chip 
to prevent hardware attacks.
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Enforcing Confidentiality through Isolation

Software entities can be separated through isolation (controlling address translation and mapping).
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Enforcing Confidentiality through State Flushing

State in the processor and elsewhere in the system can be flushed to ensure confidentiality
from other entities that will later run on the system.
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Enforcing Integrity through Cryptographic Hashing

Symmetric key cryptography should be used to protect data going off chip 
to prevent hardware attacks.
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No Side-Effects Assumption

Secure processor architectures assume no side-effects are visible to the untrusted components
whenever protected software is executing.

1. System is in some state
before protected software runs

2. Protected software runs
modifying system state

3. When protected software is 
interrupted or terminates 
the state modifications
are erased
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Benign Protected Software Assumption

The software (code and data) executing within TEE protections is assumed to be benign
and not malicious:

• Goal of Secure Processor Architectures is to create minimal TCB that realizes a TEE
within which the protected software resides and executes

• Secure Processor Architectures can not protect software if it is buggy or has vulnerabilities

Code bloat endangers invalidating assumptions about benign protected software.

Attacks from within protected software should be defended.
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Hardware TCB as Circuits or Processors

Key parts of the hardware TCB can be implemented as dedicated circuits or
as firmware or other code running on dedicated processor

• Custom logic or hardware
state machine:

• Most academic proposals

• Code running on dedicated
processor:

• Intel ME = ARC processor 
or Intel Quark processor

• AMD PSP = ARM processor

Tutorial on Principles of Secure Processor Architecture Design 
© Jakub Szefer (ver. HPCA 2019)

Processor Chip

Cache

Uncore

Core
$ $

Core
$ Reg.…

Memory I/O Devices

FU State

SecE

56



Ensuring TCB is Trustworthy

Vulnerabilities in TCB “hardware” can lead to attacks that nullify the security protections
offered by the system.

• Problems in hardware state
machines controlling the system

• Problem in software or firmware
running on the embedded
processors
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Trustworthy TCB Execution Assumption

Trustworthiness of the TCB depends on the ability to monitor the TCB code 
(hardware and software) execution as the system runs.

Monitoring of TCB requires mechanisms to:
• Fingerprint and authenticate TCB code
• Monitor TCB execution
• Protect TCB code (on embedded security processor)

• Virtual Memory, ASLR, …
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Performance Overhead of Securing TCB

Impact of threat model on performance:
• Protecting against more threats typically adds more overhead
• Memory encryption and integrity checking are the most expensive part,

but really depends on how defense is implemented

• Secure caches: 1~10% overhead
• Spectre protections: initially stated >10%, now most <10%
• Memory encryption: can be >100%

More protections, must not mean less performance:
• Partitioning
• Randomization is not always bad
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Alternatives: FHE, FE, …

TEEs use trusted hardware and software to protect computation that is done in plaintext.

Cryptography-based approaches could be used, but they come at 
tremendous performance cost and are not practical today.

• FHE – Fully Homomorphic Encryption
• FE –Function Encryption
• MPC – Multi-Party Computation
• RE – Randomized Encodings
• GES – Graded Encoding Scheme 
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Hardware Roots of Trust
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Root of Trust and the Processor Key

Security of the system is derived from a root of trust.

• A secret (cryptographic key) 
only accessible to TCB components

• Derive encryption and signing keys
from the root of trust
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Root of Trust and Processor Key

Each processor requires a unique secret.

• Burn in at the factory by the manufacturer
(but implies trust issues with manufacturer
and the supply chain)

• E.g. One-Time Programmable (OTP) fuses

• Use Physically Uncloneable Functions
(but requires reliability)

• Extra hardware to derive keys from PUF
• Mechanisms to generate and distribute

certificates for the key
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Secrecy of Root of Trust Key Assumption 

The unique processor key is assumed to be never disclosed to anybody.

• Manufacturer protects the keys
• Manufacturer is trusted to never disclose the keys

If using PUFs, then the trusted party doing the enrollment and key generation is trusted
• Trust enrolling party
• Or may need on-chip key generation facility
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Derived Keys and Key Distribution

Derived form the root of trust are signing and verification keys.

• Public key, KPK, for encrypting data 
to be sent to the processor

• Data handled by the TCB

• Signature verification key, KVK, for checking
data signed by the processor

• TCB can sign user keys
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Key Distribution for PUF-based Designs

Designs that leverage PUF may require users or companies to run their own
key distribution solutions.

• Deploy own infrastructure
• Use a trusted 3rd party
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Protected Root of Trust Assumption

The root of trust is assumed to be protected.

If keys are burned-in by the manufacturer
• Secret keys are only known to the manufacturer
• Manufacturer keeps secure database of the keys

If keys are derive from PUFs:
• Keys are certificates are generated on-chip
• Or, generated keys are only available to trusted enrolling party
• New keys can be regenerated or it is known if key was already generated and ”locked”
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SMM

SecE

Hypervisor (VMM)

Software Measurement

With an embedded signing key, the software running in the TEE can be “measured” to attest to 
external users what code is running on the system.
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Trusted / Secure / Authenticated Boot

When the system boots up, the software components of the TCB are measured:

• Abort when wrong measurement is obtained
• Or, continue booting but do not decrypt secrets

Any single bit change in the TCB software will give different measurement, 
and prevent correct bootup:

• Legitimate software updates will change measurements
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Remote Attestation

TCB can sign measurements taken and send a digital signature to the remote user:

• Measure the software after start up
• Send periodic measurements on request

• Requires continuous attestation based on
something other than hashes
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Data Sealing (Remote)

Data can be sealed (encrypted) and correct decryption key can be only made available once
a measurement is verified.
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Disk

Data Sealing (Local)

Locally, the measurement, taken by the TCB, can be used to unlock data on storage
such as on hard disk (e.g. BitLocker).
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TOC-TOU Attacks and Measurements

Time-of-Check to Time-of-Use (TOC-TOU) attacks leverage the delay between when a 
measurement is taken, and when the component is used.

• System can be compromised
• But measurement indicates correct data

Cannot easily use hashes to prevent TOC-TOU attacks, as one would have to have reference
hashes for all different possible runtime states of the software.
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Continuous Monitoring of Protected Software

Continuous monitoring is potential solution to TOC-TOU:

• Constantly measure the system, e.g. performance counters, and look for anomalies
• Requires knowing correct and expected behavior of system
• Can be used for continuous authentication

Attacker can “hide in the noise” if they change the execution of the software slightly and do not affect 
performance counters significantly.
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Fresh Measurement Assumption

Authentication and data sealing give access to data to correctly executing software.

• Measurements used to un-seal data need to be fresh
• Revoke access if measurements change

• But data may have already leaked out
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Limiting Execution to only Authorize Code

Firmware (TCB) updates or protected software can be authenticated in the processor
through use of signatures made by a trusted party.
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Privacy and Lock-in Concerns

Privacy issue arise from the authentication mechanisms:
• If using private key directly each time, can know from which processor are the messages coming
• If the Certificate Authority is run by the manufacturer, they know exactly when the processor is 

being used

Direct Anonymous Attestation (DAA) from TPM offers some protections while allowing for remote 
authentication.

Lock-in issues arise from limiting what code can run on the system:
• Signature is required by 3rd party to get firmware update or software to run
• Depend on 3rd party for approval
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Memory Protection
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Sources of Attacks on Memory

Memory is vulnerable to different types of attacks:
a) Untrusted software running no the processor

b) Physical attacks on the memory bus, other devices snooping on the bus, man-in-the-middle
attacks with malicious device

c) Physical attacks on the memory (Coldboot, …)

d) Malicious devices using DMA or other attacks
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Types of Attacks on Memory

Different types of attacks exist (very similar to attacks in network settings):

• Snooping

• Spoofing

• Splicing

• Replay

• Disturbance
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Confidentiality Protection with Encryption

Contents of the memory can be protected with encryption.  Data going out of the CPU is encrypted, 
data coming from memory is decrypted before being used by CPU.

a) Encryption engine (usually AES in CTR mode) encrypts data going out of processor chip
b) Decryption engine decrypts incoming data
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Integrity Protection with Hash Trees

Hash tree (also called Merkle Tree) is a logical three structure, typically a binary tree, where two 
child nodes are hashed together to create parent node; the root node is a hash that depends on 
value of all the leaf nodes.
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Integrity Protection with Hash Trees

Memory blocks can be the leaf nodes in a Merkle Tree, 
the tree root is a hash that depends
on the contents of the memory.
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Integrity Protection with Bonsai Hash Trees

Message Authentication Codes (MACs) can be used instead of hashes, and a smaller
“Bonsai” tree can be constructed.
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Integrity Protection of Selected Memory Regions

• For encryption, type of encryption does not typically depend on memory configuration
• For integrity, the integrity tree needs to consider:

• Protect whole memory
• Protect parts of memory (e.g. per application, per VM, etc.)
• Protect external storage (e.g. data swapped to disk)
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Memory Access Pattern Protection

Snooping attacks can target extracting data (protected with encryption)
or extracting access patterns to learn what a program is doing.
• Easier in Symmetric multiprocessing (SMP) due to shared bus

• Possible in other configuration if there are untrusted components
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Memory Access Pattern Protection

Access patterns (traffic analysis) attacks can be protected with use Oblivious RAM, such as Path 
ORAM.  This is on top of encryption and integrity checking.
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Leveraging 2.5D and 3D Integration

With 2.5D and 3D integration, the memory is brought into the same package as the main processor 
chip.  Further, with embedded DRAM (eDRAM) the memory is on the same chip.
• Potentially probing attacks are more difficult
• Still limited memory (eDRAM around 128MB in 2017)
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Security of Non-Volatile Memories and NVRAMs

• Non-volatile memories (NVMs) can store data even when there is no power
• Non-volatile random-access memory (NVRAM) is a specific type of NVM that is suitable to serve 

as a computer system’s main memory, and replace or augment DRAM

• Many types of NVRAMs:
• ReRAM – based on memristors, stores data in resistance of a dialectric material
• FeRAM – uses ferroelectric material instead of a dialectric material
• MRAM – uses ferromagnetic materials and stores data in resistance of a storage cell
• PCM – typically uses chalcogenide glass where different glass phases have different resistances

Security considerations
• Data remanence makes passive attacks easier (e.g. data extraction)
• Data is maintained after reboot or crash (security state also needs to be correctly restored after 

reboot or crash)
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Features of Systems using NVRAMs

Persistence:
• Data persists across reboots and crashes, possibly with errors
• Need atomicity for data larger than one memory word 

(either all data or no data is “persisted”)
• E.g. Write Pending Queue (WPQ) – memory controller

has non-volatile storage or enough stored charge to write
pending data back to the NV-DIMM or NVRAM

Granularity of persistence:
• Hide non-volatility from the system: simply use memory as DRAM replacement
• Expose non-volatility to the system: allow users to select which data is non-volatile

• Linux support through Direct Access (DAX) since about 2014
• Developed for NV-DIMMs (e.g., battery backed DRAM, but works for NVRAMs)
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Integrity Protection of NVRAMs

• For integrity, the integrity tree needs to additionally consider:
• Atomicity of memory updates for data and related security state (so it is correct after reboot or a crash)
• Which data in NVRAM is to be persisted (i.e. granularity)
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Encrypted, Hashed, Oblivious Access Memory Assumption

Off-chip memory is untrusted and the contents is assumed to be protected from the snooping, 
spoofing, splicing, replay, and disturbance attacks:

• Encryption – snooping and spoofing protection
• Hashing – spoofing, splicing, replay (counters must be used), and disturbance protection 
• Oblivious Access – snooping protection
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Multiprocessor and Many-core Protections
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Multiprocessor Architectures

Symmetric Multi Processing (SMP) and Distributed Share Memory (DSM) also referred to as
Non-Uniform Memory Access (NUMA) offer two ways of connecting many CPUs together.

SMP DSM / NUMA

Tutorial on Principles of Secure Processor Architecture Design 
© Jakub Szefer (ver. HPCA 2019)

Individual processors are still
trusted

Emoji Image:
https://www.emojione.com/emoji/1f479

Other components
on the same system
are untrusted

94



SMP Protections

Encrypt traffic on the bus between processors
• Each source-destination pair can share a hard-coded key
• Or use distribute keys using public key infrastructure (within a computer)

Use MACs for integrity of messages
• Again, each source-destination pair can share a key

Use Merkle trees for memory protection
• Can snoop on the shared memory bus to update the tree root node 

as other processors are doing memory accesses
• Or per-processor tree
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DSM / NUMA Protections

Encrypt traffic on the bus between processors
• Again need a shared key

Use MACs for integrity of messages
• Again, each source-destination pair can share a key

Use Merkle trees for memory protection
• No-longer can snoop on the traffic (DSM is point to point usually)
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Many-core Trust Boundary

Trusted processor chip boundary is reduced in most research focusing on many-core security
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Architecture and Hardware Security Intersection

With many-core chips, the threats architects worry about start to overlap 
with hardware security researchers’ work

• Untrusted 3rd party intellectual property (IP) cores
• Malicious foundry
• Untrusted supply chain

Architecture solutions (add encryption, add hashing, etc.) complement
defenses developed by hardware security experts (split manufacturing, etc.).
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Protected Inter-processor Communication Assumption

In addition to the existing assumption about protected memory communication, 
designs with multiple processors or cores assume the inter-processor communication will be 
protected:

• Confidentiality
• Integrity
• Communication pattern protection
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Performance Challenges

Interconnects between processors are very fast:

• E.g. HyperTransport specifies speeds in excess of 50 GB/s
• AES block size is 128 bits
• Encryption would need 3 billion (giga) AES block encryptions or decryptions per second

• Tricks such as counter mode encryption can help
• Only XOR data with a pad
• But need to have or predict counters and generate the pads in time
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Side Channel Threats and Protections
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Side and Covert Channels

A covert channel is an intentional communication between a sender and a receiver via a medium
not designed to be a communication channel.

In a side channel, the “sender”
in an unsuspecting victim and
the “receiver” is the attacker.
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Covert Channels

Covert Channel – a communication channel that was not intended or designed to transfer 
information, typically leverage unusual methods for communication of information, 
never intended by the system’s designers

• Timing
• Power
• Thermal emanations
• Electro-magnetic (EM) emanations
• Acoustic emanations 

Covert channel is easier to establish, a precursor to side-channel attack
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Side Channels

Side Channel – is similar to a covert channel, but the sender does not intend to communicate 
information to the receiver, rather sending (i.e. leaking) of information is a side effect of the 
implementation and the way the computer hardware or software is used. 

• Timing
• Power
• Thermal emanations
• Electro-magnetic (EM) emanations
• Acoustic emanations 

Differentiate side channel from covert channel depending on who controls the “sender”
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Side Channels – Victim to Attacker

Typically a side channel is from an unsuspecting victim to an attacker.

• Goal is to extract some information from victim
• Victim does not observe any execution behavior change
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Side Channels – Attacker to Victim

A side channel can also exist from attacker to victim.

• Attacker’s behavior can ”send” some information to the victim
• The information, in form of processor state for example, affects

how the victim behaves unbeknownst to them
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Timing Side Channels Inside a Processor

Many components of a modern processor pipeline can contribute to side channels.
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Sources of Timing Side Channels

Five source of side channels that can lead to attacks

1. Variable Instruction Execution Timing – Execution of different instructions takes different 
amount of time 

2. Functional Unit Contention – Sharing of hardware leads to contention, whether a program can 
use some hardware leaks information about other programs

3. Stateful Functional Units – Program’s behavior can affect state of the functional units, and 
other programs can observe the output (which depends on the state)

4. Memory Hierarchy – Data caching creates fast and slow execution paths, leading to timing 
differences depending on whether data is in the cache or not

5. Physical Emanations – Execution of programs affects physical characteristics of the chip, such 
as thermal changes, which can be observed
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Variable Instruction Execution Timing

Computer architecture principles of pipelining and making common case fast drive processor 
designs where certain operations take more time than others – program execution timing may reveal 
which instruction was used.
• Multi-cycle floating point vs. single cycle addition
• Memory access hitting in the cache vs. memory access going to DRAM

Constant time software implementations can choose instructions to try to make software run in 
constant time
• Arithmetic is easiest to deal with
• Caches may need to be flushed to get constant memory instruction timing
• No way to flush state of functional units such as branch predictor
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Functional Unit Contention

Functional units within processor are re-used or shared to save on area and cost of the processor 
resulting in varying program execution.
• Contention for functional units causes execution time differences

Spatial or Temporal Multiplexing allows to dedicate part of the processor for exclusive use by an 
application
• Negative performance impact or need to duplicate hardware
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Stateful Functional Units

Many functional units inside the processor keep some history of past execution and use the 
information for prediction purposes. 
• Execution time or other output may depend on the state of the functional unit
• If functional unit is shared, other programs can guess the state (and thus the history)
• E.g. caches, branch predator, prefetcher, etc.

Flushing state can erase the history.
• Not really supported today
• Will have negative performance impact
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Timing Side Channels in Memory Hierarchy

Memory hierarchy aims to improve system performance by hiding memory access latency 
(creating fast and slow executions paths); and parts of the hierarchy area a shared resource.

• Cache replacement logic
• Inclusive caches
• Non-inclusive caches
• Exclusive caches

• Prefetcher logic
• Also speculative instruction 

fetching from processor core

• Memory controller
• Interconnect
• Coherence bus
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Timing Cache Side Channels

Sharing of cache between two programs can let attacker program learn some information about a 
victim program based on observed timing of cache hits and misses.

E.g. Prime+Probe attack
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Timing Side Channels due to Other Components

• Prefetcher – is used to prefetch data that may be used in figure 
• Speculative Execution – data is fetched if an instruction is executed speculatively

• TLB – translation look aside buffer is another type of cache
• Page Walk Cache (PWC) in Intel processors, is a buffer inside TLB

• Memory Controller – controls the memory accesses and arbiters between different cores or 
caches accessing the memory

• Interconnect – interconnect between different components within the chip

• Coherence bus – interconnect between the chip and other chips or memory
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Meltdown

Meltdown vulnerability can be used to break isolation between user applications and the operating 
system. 

1. Attempt to read data from kernel memory
(mapped into address space of application)

2. Before an exception is raised, following instructions
are speculatively executed

3. Exception is raised, however…

4. Cache state is modified

5. Processor cleans up the state, but data is left in cache
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Meltdown

Meltdown combines multiple attacks:

• Out-of-order execution causes permission checks to be done after operation already executes
(only affects some processors)  

• Cache state is not cleaned up, so one application can observe what the other did
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Spectre

Spectre vulnerability can be used to break isolation between different applications.

1. Attacker “trains” branch predictor
2. If statement in example is executed

(predicted true)
3. Secret data from array1 is used as index to array2

4. Cache state is modified

5. Branch is resolved, processor cleans up the state,
but data is left in cache
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Spectre

Spectre combines multiple attacks:

• Branch predictor state is not cleaned up, so one application can affect another
• Cache state is not cleaned up, so one application can observe what the other did
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Foreshadow

Foreshadow vulnerability is similar to Spectre, but targets Intel SGX.

• Attack allows for speculative access to protected data in SGX memory
• Data is encrypted in DRAM
• But data is unencrypted in caches

• If the protected data is loaded into L1 cache by the victim (SGX enclave),
attacker may be able to speculatively access it before processor determines
that the access is forbidden.

• Difficult to exploit for true attack due to timing and data having to be in L1 cache
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Classical vs. Speculative Side-Channels

Side channels can now be classified into two categories:
• Classical – which do not require speculative execution
• Speculative – which are based on speculative execution

Difference is victim is not fully in control of 
instructions they execute (i.e. some instructions are
executed speculatively)

Root cause of the attacks remains the same

Defending classical attacks defends speculative
attacks as well, but not the other way around
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Focusing only on speculative attacks does
not mean classical attacks are prevented,
e.g. defenses for cache-based attacks



Speculation Window

Key concept for speculative side-channel attacks is the speculation window

Speculation window:
• Amount of time from when a speculatively

executed instructions start to issue,
until when the instruction is squashed 
or becomes non-speculative

• Whole attack has to fit into speculation window
• E.g. cache Flush+Reload attack requires to fetch 

data from main memory, thus window has 
to be bigger than about 300 cycles

• E.g. Foreshadow attack requires fetch from L1 cache,
so few cycles window is enough
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Side Channels due to Physical Emanations

Side-channels can be also observed from outside of the computer system, notably through physical 
emanations.

• Thermal
• Electromagnetic
• Acoustic
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Require measuring EM radiation. Today need
dedicated equipment.
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Timing Side Channel Bandwidths

The Orange Book, also called the Trusted Computer System Evaluation Criteria (TCSEC), specifies 
that a channel bandwidth exceeding a rate of 100 bps is a high bandwidth channel. 
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Side Channel Classification
Attacker
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Timing Channel Defense Strategies

Hardware and software based defenses are possible.  Most will result in performance degradation.
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Secure Caches to Defend Side Channels

Numerous academic proposals have presented different secure cache architectures
that aim to defend against different cache-based side channels.

Approximate evaluation of 10 secure cache proposals:

Partitioning and randomization are most effective techniques used in these caches
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Example: Intel’s Side Channel Defenses

Intel’s Resource Director Technology (RDT) provides the hardware framework to monitor and 
manage shared CPU resources, like cache and memory bandwidth.

• Cache Monitoring Technology (CMT)
• Memory Bandwidth Monitoring (MBM)
• Cache Allocation Technology (CAT)
• Code and Data Prioritization (CDP)
• Memory Bandwidth Allocation (MBA)

Shared units inside the processor (e.g. branch predictor) so far not considered, 
but could be important to protect.
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Side Channel Free TEE Assumption

The protected software assumes that the TEE is side channel free.

• TCB hardware and software should clean up processor state to remote any side channels
• Memory hierarchy should defend protected software from side channels

Protected software still needs to defend against internal interference channels
• Software’s own memory accesses interfere with each other
• Best to write constant time software
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Side Channels as Attack Detectors

Side channels can be used to detect or observe system operation.

• Measure timing, power, EM, etc. to detect unusual behavior
• Similar to using performance counters, but attacker doesn’t know measurement is going on

Tension between side channels as attack vectors vs. detection tools.
• Side channels are mostly used for attack today
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Industry Standards for Evaluating System’s Security

Orange Book or the Trusted Computer System Evaluation Criteria (TCSEC)
• Replaced by Common Criteria
• Standard for assessing the effectiveness of a computer system’s security controls

Common Criteria
• Standard for computer security certification

FIPS 140-2
• Standard defining security levels for cryptogrphic modules
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Principles of Secure Processor Architecture Design
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Hardware Roots of Trust

Memory Protections
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Side Channel Threats and Protections
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Traditional computer architecture has six principles regarding processor design:

• Caching

• Pipelining

• Predicting

• Parallelizing

• Use of indirection

• Specialization

What are principles for secure architectures?

E.g. caching frequently used data in a small but fast memory helps hide data
access latencies.

Principles of Computer Architecture

E.g. predict control flow direction or data values before they are actually
computed allows code to execute speculatively.

E.g. processing multiple data in parallel allows for more computation to be
done concurrently.

E.g. virtual to physical mapping abstracts away physical details of the system.

E.g. break processing of an instruction into smaller chunks that can each be
executed sequentially reduces critical path of logic and improves
performance.

E.g. custom instructions use dedicated circuits to implement operations that
otherwise would be slower using regular processor instructions.
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Review of Secure Processor Assumptions

Assumptions and how they are broken:

• Trusted Processor Chip Assumption
• Small TCB Assumption
• Open TCB Assumption
• No Side-Effects Assumption
• Benign Protected Software Assumption
• Trustworthy TCB Execution Assumption
• Protected Root of Trust Assumption
• Fresh Measurement Assumption
• Encrypted, Hashed, Oblivious Access Memory Assumption
• Protected Inter-processor Communication Assumption
• Side Channel Free TEE Assumption
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Invasive attacks, hardware Trojans, supply
chain attacks

Code bloat, proprietary code running on
embedded security processor

State in functional units not cleaned up

Malware hidden in TEE

No means to monitor TCB execution

Compromised manufacturer database

TOC-TOU attacks and no continuous measurement

Lack of encryption, hashing or ORAM
due to performance issues

Lack of side channel protections
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Principles of Secure Processor Architecture Design

Four principles for secure processor architecture design based on existing designs and also on 
ideas about what ideal design should look like.

1. Protect Off-chip Communication and Memory
2. Isolate Processor State between TEE Execution
3. Allow TCB Introspection
4. Authenticate and Continuously Monitor TEE

Additional design suggestions:
• Avoid code bloat
• Minimize TCB
• Ensure hardware security (Trojan prevention, supply chain issues, etc.)
• Use formal verification
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Protect Off-chip Communication and Memory

Off-chip components and communication are untrusted, need protection with encryption, hashing, 
access pattern protection.

Open research challenges:
• Performance
• Key distribution
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Isolate Processor State between TEE Execution

When switching between protected software, need to flush the state, or save and restore it,
to prevent one software influencing another.

Open research challenges:
• Performance
• Finding all the state to flush or clean
• ISA interface to allow state flushing
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Allow TCB Introspection

Need to ensure correct execution of TCB, through open access to TCB design, monitoring, 
fingerprinting, and authentication.

Open research challenges:
• ISA interface to introspect TCB
• Area, energy, performance costs

due extra features for introspection
• Leaking information about 

TCB or TEE
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Authenticate and Continuously Monitor TEE

Monitoring of software running inside TEE, e.g. TSMs or Enclaves, gives assurances about the state 
of the protected software.

Open research challenges:
• Interface design for monitoring
• Leaking information about TEE
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Pitfalls and Fallacies

• Pitfall: Security by Obscurity 

• Fallacy: Hardware Is Immutable 

• Pitfall: Wrong Threat Model

• Pitfall: Fixed Threat Model

• Pitfall: Use of Outdated or Custom Crypto 

• Pitfall: Not Addressing Side Channels 

• Pitfall: Requiring Zero-Overhead Security

• Pitfall: Code Bloat

• Pitfall: Incorrect Abstraction
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E.g. recent attacks on industry processors.

Most actually realized architectures use a security
processor (e.g. ME or PSP).

E.g. original SGX did not claim side channel
protection, but researchers attacked it.

Most designs are one-size-fits all solutions.

E.g. today’s devices will be in the field for many years,
but do not use post-quantum crypto.
Most architectures underestimate side channels.

Performance-, area-, or energy-only focused designs
ignore security.

E.g. rather than partition a problem, large code pieces
are ran instead TEEs; also TCB gets bigger and
bigger leading to bugs.

Abstraction (e.g. ISA assumptions) does not match
how device or hardware really behaves.

139



Pitfalls and Fallacies

• Pitfall: Focus Only on Speculative Attacks

• …
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Challenges in Secure Processor Design

A number of challenges remain in research on secure processor designs:
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The Book

Jakub Szefer, ”Principles of Secure Processor
Architecture Design,” in Synthesis Lectures on
Computer Architecture, Morgan & Claypool
Publishers, October 2018.

http://caslab.csl.yale.edu/books/
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Summer Course on Processor Architecture Security

Who: Jakub Szefer

What: Summer Course on Processor Architecture Security 

Where: at the 15th International Summer School on Advanced Computer Architecture and 
Compilation for High-Performance and Embedded Systems (ACACES), in
Rome, Italy

When: Sunday evening July 14th, 2019 until Friday evening July 19th, 2019
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Thank You!

Tutorial on Principles of Secure Processor Architecture Design 
© Jakub Szefer (ver. HPCA 2019) 145


