
Principles of Secure Processor
Architecture Design

Slides and information available at:

http://caslab.csl.yale.edu/tutorials/hpca2019/

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019) 1

Jakub Szefer
Assistant Professor

Dept. of Electrical Engineering
Yale University

HPCA 2019 – February 17th, 2019

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019) 2

Principles of Secure Processor
Architecture Design

Tutorial Outline

13:00 – 13:30 Secure Processor Architectures
13:30 – 14:00 Trusted Execution Environments
14:00 – 14:10 Break
14:10 – 14:30 Hardware Roots of Trust
14:30 – 14:50 Memory Protection
14:50 – 15:00 Multiprocessor and Many-core Protections
15:00 – 15:10 Break
15:10 – 15:50 Side-Channels Threats and Protections

including Speculative Execution Threats
15:50 – 16:20 Principles of Secure Processor Architecture Design
16:20 – 16:30 Ending

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019) 3

The Book

Jakub Szefer, ”Principles of Secure Processor
Architecture Design,” in Synthesis Lectures on
Computer Architecture, Morgan & Claypool
Publishers, October 2018.

http://caslab.csl.yale.edu/books/

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019) 4

Secure Processor Architectures

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019)

Trusted Execution Environments

Hardware Roots of Trust

Memory Protection

Multiprocessor and Many-core Protections

Side-Channels Threats and Protections

Principles of Secure Processor Architecture Design
5

Types of Security Related Architectures

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019)

Processor Chip

$

Uncore

Core
$ $

Core
$ $…

Accelerator

6

Secure Processor
Architecture

Processor Chip

Secure Co-Processor
or HSM Architecture

Co-Processor Chip

Security

Crypto
…

Crypto

Sec. I/O

…
PUFs

uProc

…

Cryptographic
Accelerators

Processor Chip

Crypto

Network Card
Crypto

I/O, Mem.,
or Dev.

Security
Monitor

Processor Chip

Monitor
Crypto

Brief History of Secure Processor Architectures

Starting in late 1990s or early 2000s, academics have shown increased interest in secure processor
architectures:

XOM (2000), AEGIS (2003), Secret-Protecting (2005), Bastion (2010),
NoHype (2010), HyperWall (2012), CHERI (2014), Sanctum (2016),

Keystone (about 2017), MI6 (2018)

Commercial processor architectures have also included security features:

LPAR in IBM mainframes (1970s), Security Processor Vault in Cell Broadband Engine (2000s),
ARM TrustZone (2000s), Intel TXT & TPM module (2000s), Intel SGX (mid 2010s),
AMD SEV (late 2010s)

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019) 7

Baseline (Unsecure) Processor Architecture

A simplified view of a processor and the software stack in a general-purpose computer:

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019)

Hardware

Processor Chip

$

Uncore

Core
$ $

Core
$ $…

Memory I/O Devices

Guest
OS

Guest
OS

Guest
OS

Hypervisor (VMM)

AppAppApp
AppAppApp

AppAppApp

…

8

Baseline (Unsecure) Processor Hardware

Typical computer system with no secure components nor secure processor
architectures considers all the components as trusted:

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019)

Processor Chip

$

Uncore

Core
$ $

Core
$ $…

Memory I/O Devices
Compromised or malicious
devices can attack other
components of the system.

Snooping on the system
bus is possible to extract
information.

Information can be extracted
from memory or memory
contents can be modified.

9

Baseline (Unsecure) Processor Software

Typical computer system uses ring-based protection scheme, which gives most privileges
(and most trust) to the lowest levels of the system software:

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019)

Guest
OS

Guest
OS

Guest
OS

Hypervisor (VMM)

Hardware

AppAppApp
AppAppApp

AppAppApp

…

Image:
https://commons.wikimedia.org/wiki/File:Priv_rings.svg

Ring -1

Ring 0

Ring 3
Compromised or malicious
OS can attack all the
applications in the system.

Compromised or malicious
Hypervisor can attack all
the OSes in the system.

10

Potential Attack Vectors

Hardware and software can be attacked through numerous attack vectors:

Hardware
on

Hardware
Attacks

Software
on

Hardware
Attacks

Hardware
on

Software
Attacks

Software
on

Software
Attacks

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019)

Most of computer
security threats are
software on software
attacks

11

Abuses of software-
hardware interface or
lack of configuration
checks allow software
actions to result in
physical modifications
to hardware

Hardware trojans and
physical probing

Hardware trojans and
hardware snooping
on executing code

Software on Software Attacks

Most computer security attacks are software attacks, typically targeting other software running on
the same computer, or targeting the OS or Hypervisor.

E.g., Return-Oriented Programming (ROP):
• Does not require loading attackers' code onto victim machine
• Requires modification of the call stack
• Uses “gadgets” present already on computer as part of some software or library

General software attack types:
• Control flow modification
• Data modification

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019) 12

Sample defense: Address
Space Layout Randomization
(ASLR)

Software on Hardware Attacks

Software can be leveraged to attempt to modify physical properties of the hardware.

Rowhammer attack:
• Repeated accesses to DRAM rows can

cause bits to flip in adjacent DRAM rows
• Leverage usual load or store instructions,

but at a very high rate
• Can be triggered by DMA from devices

as well
• Use attack to change protection bits

in a page table, etc.

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019) 13

Images:
(left) Xiong, et al., “Run-Time Accessible DRAM PUFs in Commodity Devices”

(right) The Hacker News

DRAM Cells DRAM Bank

Software on Hardware Attacks

Software can be leveraged to attempt to modify physical properties of the hardware.

CLKScrew attack:
• Abuses Dynamic Voltage and Frequency

Scaling (DVFS) features
• Adjust configuration beyond normally

allowed operating points
• Inject faults into system

• Confidentiality – inject faults and use differential
fault attacks to get secret key

• Integrity – inject faults to get data verification
to pass

Availability – crash system with too many faults

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019) 14

Images:
USENIX slides for “CLKScrew: Exposing the Perils of Security-Oblivious Energy Management”

Confidentiality Attack

Integrity Attack

Hardware on Hardware Attacks

Require hardware modification (hardware trojans) or physical proximity

Hardware trojans:
• Hardware is modified to add hidden functionality

• In source code, 3rd party IP modules, malicious
CAD tools, at the foundry, physically
after manufacturing

• Modify hardware behavior or extract secrets

Other attack categories:
• Physical extraction after attack (e.g. probing)
• Side channels: power, EM, thermal
• Fault injection (using dedicated physical equipment)

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019) 15

Sample Hardware Trojan (HT) in AES

Hardware on Software Attacks

Leverage hardware modification to change behavior of the software or extract some secrets.

Exfiltration of software secrets:
• Leverage hardware’s access to registers

and memory to read out data
• Example attacks with snooping on memory bus

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019) 16

Sample defense: don’t make
all hardware trusted, e.g. use
memory encryption

Attacking Hardware without Physical Access

Possibilities for hardware attacks with dedicated tools and lots of money are infinite.
However, software on hardware attacks requiring no physical access are possible today.

• Rowhammer

• CLKScrew

• …

• Meltdown

• Spectre

• …

Abusing Dynamic Voltage and Frequency Scaling (DVFS) features can allow attacker
to introduce faults into a system.

Repeated accesses to DRAM rows can cause bits to flip in adjacent DRAM rows, e.g.
to change protection bits in a page table.

Out-of-order execution and incorrect checking of protection bits + cache side channel
attacks can leak information about protected memory contents.

Speculative execution + cache side channel attacks can be used to extract data from
an application.

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019) 17

Protecting from Software and Hardware Attacks

Secure Processor Architectures add new hardware and software features
to provide Trusted Execution Environments (TEEs) wherein software
executes protected from some of the software and hardware threats.

• Enhance general-purpose processor
with new protection features

• Provide new or alternate privilege levels
• Utilize software and hardware changes
• Facilitate attestation of the protected software

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019) 18

Processor Chip

$

Uncore

Core
$ $

Core
$ $…

Secure Processor
Architecture

Security

Crypto
…

New Privilege Levels

Modern computer systems define protections in terms of privilege level or protection rings,
new privilege levels are defined to provide added protections.

Ring 3 Application code, least privileged.
Rings 2 and 1 Device drivers and other semi-privileged

code, although rarely used.
Ring 0 Operating system kernel.
Ring -1 Hypervisor or virtual machine monitor (VMM),

most privileged mode that a typical system
administrator has access to.

Ring -2 System management mode (SMM),
typically locked down by processor manufacturer

Ring -3 Platform management engine, retroactively named “ring -3”,
actually runs on a separate management processor.

Image:
https://commons.wikimedia.org/wiki/File:Priv_rings.svg

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019) 19

Extend Linear Trust with New Protection Levels

The hardware is most privileged as it is the lowest level in the system.

• There is a linear relationship between
protection ring and privilege (lower ring
is more privileged)

• Each component trusts all the software
“below” it

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019)

Guest
OS

Guest
OS

Guest
OS

Hardware

AppAppApp
AppAppApp

AppAppApp

…

Ring -1

Ring 0

Ring 3

SMM

SecE

Hypervisor (VMM)
Ring -2
Ring -3

Security Engine (SecE)
can be something like
Intel’s ME or AMD’s PSP.

20

Security levels from a lattice:

Add Horizontal Privilege Separation

New privileges can be made orthogonal to existing protection rings.

• E.g. ARM’s TrustZone’s “normal” and “secure” worlds
• Need privilege level (ring number)

and normal / secure privilege

Image:
https://commons.wikimedia.org/wiki/File:Priv_rings.svg

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019)

Privileged
Operation

Normal
Operation

Ring -1
Normal

Ring 0
Normal

Ring 3
Normal

Ring -1
Privileged

Ring 0
Privileged

Ring 3
Privileged

21

Breaking Linear Hierarchy of Protection Rings

Examples of architectures that do and don’t have a linear relationship between
privileges and protection ring level:

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019)

Guest
OS

Hardware

AppAppApp

Ring -1

Ring 0

Ring 3

SMM

SecE

HV
Ring -2
Ring -3

Normal Computer

Guest
OS

Hardware

AppAppApp

Ring -1

Ring 0

Ring 3

SMM

SecE

HV
Ring -2
Ring -3

E.g. SEV

Guest
OS

Hardware

AppAppApp

Ring -1

Ring 0

Ring 3

SMM

SecE

HV
Ring -2
Ring -3

E.g. Bastion

TSM

Guest
OS

Hardware

AppAppApp

Ring -1

Ring 0

Ring 3

SMM

SecE

HV
Ring -2
Ring -3

E.g. SGX

Encl
ave

22

Simplified schematic of Intel SGX architecture and the protected enclaves.

SMM

ME

Hypervisor (VMM)

Example Secure Architecture: Intel SGX

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019)

Hardware

Processor Chip

$

Uncore

Core
$ $

Core
$ $…

Memory I/O Devices

Guest
OS

Guest
OS

Guest
OS

AppAppApp
AppAppApp

AppAppApp

…

Encl
ave

ME

Emoji Image:
https://www.emojione.com/emoji/1f479

23

Simplified schematic of AMD SEV architecture and the protected Virtual Machines.

SMM

PSP

Hypervisor (VMM)

Guest
OS

AppAppApp

Guest
OS

AppAppApp

Example Secure Architecture: AMD SEV

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019)

Hardware

Processor Chip

$

Uncore

Core
$ $

Core
$ $…

Memory I/O Devices

Guest
OS

Guest
OS

AppAppApp
AppAppApp

…

PSP

Emoji Image:
https://www.emojione.com/emoji/1f479

24

SecE

Guest
OS

AppAppApp
Secure
World

OS

AppAppApp

Example Secure Architecture: ARM TrustZone

Simplified schematic of ARM TrustZone architecture and the normal and protected worlds.

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019)

Hardware

Processor Chip

$

Uncore

Core
$ $

Core
$ $…

Memory I/O Devices

Normal
World

OS

AppAppApp

SecE

Emoji Image:
https://www.emojione.com/emoji/1f479

25

Memory is not encrypted,
but access is protected
through secure world bit;
prevents some attacks
but not physical attacks

Trusted Processor Chip Assumption

Key to most secure processor architecture designs is the trusted processor chip assumption.

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019)

Processor Chip

$

Uncore

Core
$ $

Core
$ $…

Memory I/O Devices
Devices are untrusted.

System bus is untrusted.

Memory is untrusted.

Whole processor chip is
trusted.

26

Trusted Computing Base

Trusted Computing Base, or TCB, is the sum total of all the hardware and software
which work together to realize the protections offered by the system.

• TCB is trusted
• TCB may not be trustworthy, if is not verified or is not bug free

TCB contains:
• All trusted hardware – typically the processor chip
• All trusted software – some software levels may be untrusted (e.g. OS in SGX)

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019) 27

Small TCB Assumption

To prevent TCB problems, TCB should be small; it is assumed that a smaller hardware and software
TCB implies better security.

The small TCB assumption is derived from:
• Less software code means it can be audited and verified
• Less hardware code means it can be audited and verified

Limitations in today’s security verification tools necessitate the small TCB assumption.
• Difficult to verify large code bases (both hardware and software)
• Hard to define all security policies for large, complex systems

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019) 28

Open TCB Assumption

Kerckhoffs’s Principle from cryptography can be applied to secure architectures:

• Operation of the TCB should be publicly known and should have no secrets
• Only secrets are the cryptographic keys
• Prevent security-by-obscurity

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019) 29

Spectre, Meltdown, Foreshadow and
other attacks could be attributed to
security-by-obscurity as well.
Microarchitectural operation of the
processor is not (clearly) publicly
known.

Today’s Limitations of Secure Architectures

Threats which are outside the scope of secure processor architectures:

• Bugs or Vulnerabilities in the TCB
• Hardware Trojans and Supply Chain Attacks
• Physical Probing and Invasive Attacks

Threats which are underestimated when designing secure processor architectures:
• Side Channel Attacks

TCB hardware and software is prone to
bugs just like any hardware and software.

Modifications to the processor after the
design phase can be sources of attacks.

At runtime hardware can be probed to
extract information from the physical
realization of the chip.

Information can leak through timing,
power, or electromagnetic emanations
from the implementation

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019) 30

Other Security Related Architectures

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019)

Processor Chip

$

Uncore

Core
$ $

Core
$ $…

Accelerator

31

Secure Processor
Architecture

Processor Chip

Secure Co-Processor
or HSM Architecture

Co-Processor Chip

Security

Crypto
…

Crypto

Sec. I/O

…
PUFs

uProc

…

Cryptographic
Accelerators

Processor Chip

Crypto

Network Card
Crypto

I/O, Mem.,
or Dev.

Security
Monitor

Processor Chip

Monitor
Crypto

Secure Co-Processors or HSMs

• Hardware security modules (HSMs) are dedicated devices
for performing cryptographic operations or running secure code

• Can be attached to the system bus such as PCIe, e.g. IBM cards
• Can be integrated into SoC design and attack to AXI

or similar bus

• Discrete HSMs typically have tamper resistant and tamper
evident coatings, or have battery for backup power

• Secure co-processors on SoC may lack battery backup,
may have lesser physical tamper dectection

Images:
https://www-03.ibm.com/security/cryptocards/pciecc/overview.shtml

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019) 32

Intel – TPM and TXT

Co-processor developed by IBM and others

• Model: TPM v1.2
• Co-processor attaching to chipset

• Some features advertised by the vendor:
• crypto engine

The Trusted Platform Module (TPM) is often
integrated with other processor security features, e.g.,
Intel’s Trusted Execution Technology (TXT)

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019) 33

Images:
https://upload.wikimedia.org/wikipedia/commons/thumb/b/be/TPM.svg

https://intelsgx.blogspot.com/2016/05/intel-sgx-vs-txt.html

Inside Secure – Programmable Root-of-Trust

Co-processor IP developed by Inside Secure

• Model: Programmable Root-of-Trust
• Co-processor attaching to standard buses

• Some features advertised by the vendor:
• crypto accelerators
• can be synthesized with SypherMedia

Library (SML) circuit camouflage technology
and anti-reverse engineering

• side channel protection
• anti-tampering
• secure debug

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019) 34

Image:
http://www.design-reuse-embedded.com/webinar/ip-soc-china-2017/slides/Inside%20Secure%20IPSOC_China_2017_Sept_V02_Public.pdf

Camouflaging can be added to
almost any design as it is at the
level of logic gates.

Thanks to Benoît De Dinechin
for suggesting to add SoC security solutions.

Rambus (Cryptography Research, Inc.) – CryptoManager

Co-processor IP developed by Cryptography Research, Inc. (CRI)

• Model: CryptoManager Root of Trust RT630
• Independent hardware security block

• Some features advertised by vendor:
• crypto accelerators and DPA resistant crypto
• “entropic array logic” to thwart reverse engineering
• canary logic for protection against glitching

and overclocking
• not susceptible to Spectre and Meltdown
• secure memories
• anti-temper
• secure debug

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019) 35

Image:
https://info.rambus.com/hubfs/rambus.com/Gated-Content/Cryptography/CryptoManager-Root-of-Trust-RT630-Product-Brief.pdf

Probably due to simple RISC-V
without speculation. Example of
trading performance for security.

Thanks to Benoît De Dinechin
for suggesting to add SoC security solutions.

ARM – CryptoCell

Co-processor IP developed by Inside Secure

• Model: CryptoCell-713
• Co-processor attaching to ARM’s buses

• Some features advertised by the vendor:
• crypto accelerators
• side channel protection
• supports Chinese crypto algorithms:

SM2 (public key alg. based on elliptic curves),
SM3 (hash function), and SM4 (block cipher)

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019) 36

Image:
https://community.arm.com/processors/b/blog/posts/new-cryptocell-security-ip-announced

Example that cryptographic
accelerators can be for different
types of crypto.

Thanks to Benoît De Dinechin
for suggesting to add SoC security solutions.

Synopsys – DesignWare tRoot Vx

Co-processor IP developed by Synopsys

• Model: tRoot V500 Hardware Secure Module
• Co-processor attaching to AMBA bus

• Some features advertised by the vendor:
• crypto accelerators
• secure debug
• can act as slave device or master device

for secure boot of the main processor

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019) 37

Image:
https://www.synopsys.com/dw/ipdir.php?ds=security-troot-hw-secure-module

Not just platform to run TEE, but
security manager for the whole
system.

Thanks to Benoît De Dinechin
for suggesting to add SoC security solutions.

Microsoft – Pluton Security Subsystem

Security subsystem for Azure Sphere
Microcontrollers (MCUs)

• Model: Pluton Engine
• Co-processor attaching to AHB bus

• Some features advertised by the vendor:
• crypto accelerators

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019) 38

Images:
https://www.hotchips.org/hc30/1conf/1.13_Microsoft_Hardware_Security_Platform_Behind_Azure_Sphere.pdfThanks to Hanjun Kim

for links to HotChip slides about Pluton

Other Security Related Architectures

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019)

Processor Chip

$

Uncore

Core
$ $

Core
$ $…

Accelerator

39

Secure Processor
Architecture

Processor Chip

Secure Co-Processor
or HSM Architecture

Co-Processor Chip

Security

Crypto
…

Crypto

Sec. I/O

…
PUFs

uProc

…

Cryptographic
Accelerators

Processor Chip

Crypto

Network Card
Crypto

I/O, Mem.,
or Dev.

Security
Monitor

Processor Chip

Monitor
Crypto

Cryptographic Accelerators

• Devices for accelerating encryption or decryption
• Network packets
• Disk or other storage

• Can be integrated into the I/O device
• Network card with crypto engine

Images:
http://www.lannerinc.com/products/x86-network-appliances/network-processing-cards/ncs-mtx401

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019) 40

Other Security Related Architectures

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019)

Processor Chip

$

Uncore

Core
$ $

Core
$ $…

Accelerator

41

Secure Processor
Architecture

Processor Chip

Secure Co-Processor
or HSM Architecture

Co-Processor Chip

Security

Crypto
…

Crypto

Sec. I/O

…
PUFs

uProc

…

Cryptographic
Accelerators

Processor Chip

Crypto

Network Card
Crypto

I/O, Mem.,
or Dev.

Security
Monitor

Processor Chip

Monitor
Crypto

Google – Titan

Discrete chip for snooping on SPI bus and protecting Flash memory with boot ROMs

• Model: Titan
• Interposes on SPI communication

to monitor status of flash memory
with boot ROMs

• Some features advertised by the vendor:
• crypto accelerators
• attack detection (glitch, laser, thermal,

voltage, or physical probing)
• boot-time and live-status checks

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019) 42

Images:
https://www.hotchips.org/hc30/1conf/1.14_Google_Titan_GoogleFinalTitanHotChips2018.pdfThanks to Hanjun Kim

for links to HotChip slides about Titan

Very important but different from code attestation; focuses
on TRNG integrity, clock signal integrity, etc.

Trusted Execution Environments

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019)

Hardware Roots of Trust

Memory Protection

Multiprocessor and Many-core Protections

Side-Channels Threats and Protections

Principles of Secure Processor Architecture Design

Secure Processor Architectures

43

Trusted Execution Environments and TCB

The goal of Trusted Execution Environments (TEEs) is to provide protections for
a piece of code and data from a range of software and hardware attacks.

• Multiple mutually-untrusting pieces of protected code can run on a system at the same time

The Trusted Computing Base (TCB) is the set of hardware and software that is responsible
for realizing the TEE:

• TEE is created by a set of all the components in the TCB
• TCB is trusted to correctly implement the protections
• Vulnerability or successful attack on TCB nullifies TEE protections

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019) 44

TEEs and Software They Protect

Different architectures mainly focus on protecting Trusted Software Modules (a.k.a. enclaves)
or whole Virtual Machines or containers.

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019)

SMM

SecE

Hypervisor (VMM)

Guest
OS

AppAppApp

Guest
OS

AppAppApp

Hardware

Guest
OS

Guest
OS

AppAppApp
AppAppApp

…

Encl
ave

Some TEEs have support
for protecting whole virtual
machines.

Other TEEs support
Trusted Software Modules,
a.k.a. enclaves

45

Protections Offered by Secure Processor Architectures

Security properties for the TEEs that secure processor architectures aim to provide:

• Confidentiality
• Integrity
• Availability (next slide)

The C. I. A. properties are with respect to components or participants of the system, commonly
named Alice, Bob, Charlie, Eve, Malory, etc., in different protocols

Confidentiality and integrity protections are from attacks by other components (and hardware) not in
the TCB. There is typically no protection from malicious TCB.

Confidentiality is the prevention of the disclosure of secret or sensitive
information to unauthorized users or entities.

Integrity is the prevention of unauthorized modification of protected
information without detection.

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019) 46

Protections offered by Secure Processor Architectures

Protections not typically offered:

• Availability

Single processor is not able to provide availability protection (e.g. anybody can unplug computer
from power source).

Security vs. Reliability:
Reliability protections assume random faults or errors, security protections assumes that reliability,
i.e. protection from random faults or errors, is already provided by the system, and focuses instead
on the deliberate attacks by a smart adversary.

Availability is the provision of services and systems to legitimate users
when requested or needed.

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019) 47

Sample Protections Categorized by Architecture

Secure processor architectures break the linear relationship (where lower level
protection ring is more trusted):

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019)

SecE

48

SMM and SecE are always
trusted today, no
architecture explores
design where these levels
are untrusted.

Protecting State of the Protected Software

Protected software’s state is distributed throughout the processor. All of it needs to be protected
from the untrusted components and other (untrusted) protected software.

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019)

Processor Chip

Cache

Uncore

Core
$ $

Core
$ Reg.…

Memory I/O Devices

FU State

SecE

$ Reg. FU State

Cache

SecE Uncore

49

Enforcing Confidentiality through Encryption

Symmetric key cryptography should be used to protect data going off chip
to prevent hardware attacks.

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019)

Processor Chip

Cache

Uncore

Core
$ $

Core
$ Reg.…

Memory I/O Devices

FU State

SecE
Enc.

KmEncrypted memory
contents and traffic
protect confidentiality
of the data.

50

Enforcing Confidentiality through Isolation

Software entities can be separated through isolation (controlling address translation and mapping).

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019)

Processor Chip

Cache

Uncore

Core
$ $

Core
$ Reg.…

Memory I/O Devices

FU State

SecE

Isolating memory
regions separates
one protected
software instance
from each other and
from untrusted
software.

51

Enforcing Confidentiality through State Flushing

State in the processor and elsewhere in the system can be flushed to ensure confidentiality
from other entities that will later run on the system.

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019)

Processor Chip

Cache

Uncore

Core
$ $

Core
$ Reg.…

Memory I/O Devices

FU State

SecE

$ Reg. FU State

Cache

SecE Uncore

52

Enforcing Integrity through Cryptographic Hashing

Symmetric key cryptography should be used to protect data going off chip
to prevent hardware attacks.

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019)

Processor Chip

Cache

Uncore

Core
$ $

Core
$ Reg.…

Memory I/O Devices

FU State

SecE
Hash

Hashing memory
contents prevents
modification by
external attackers.

Root
Hash

53

No Side-Effects Assumption

Secure processor architectures assume no side-effects are visible to the untrusted components
whenever protected software is executing.

1. System is in some state
before protected software runs

2. Protected software runs
modifying system state

3. When protected software is
interrupted or terminates
the state modifications
are erased

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019)

Processor Chip

Cache

Uncore

Core
$ $

Core
$ Reg.…

Memory I/O Devices

FU State

SecE

$ Reg. FU State

Cache

SecE Uncore

54

Benign Protected Software Assumption

The software (code and data) executing within TEE protections is assumed to be benign
and not malicious:

• Goal of Secure Processor Architectures is to create minimal TCB that realizes a TEE
within which the protected software resides and executes

• Secure Processor Architectures can not protect software if it is buggy or has vulnerabilities

Code bloat endangers invalidating assumptions about benign protected software.

Attacks from within protected software should be defended.

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019) 55

Hardware TCB as Circuits or Processors

Key parts of the hardware TCB can be implemented as dedicated circuits or
as firmware or other code running on dedicated processor

• Custom logic or hardware
state machine:

• Most academic proposals

• Code running on dedicated
processor:

• Intel ME = ARC processor
or Intel Quark processor

• AMD PSP = ARM processor

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019)

Processor Chip

Cache

Uncore

Core
$ $

Core
$ Reg.…

Memory I/O Devices

FU State

SecE

56

Ensuring TCB is Trustworthy

Vulnerabilities in TCB “hardware” can lead to attacks that nullify the security protections
offered by the system.

• Problems in hardware state
machines controlling the system

• Problem in software or firmware
running on the embedded
processors

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019)

Processor Chip

Cache

Uncore

Core
$ $

Core
$ Reg.…

Memory I/O Devices

FU State

SecE

Emoji Image:
https://www.emojione.com/emoji/1f4a9

57

Trustworthy TCB Execution Assumption

Trustworthiness of the TCB depends on the ability to monitor the TCB code
(hardware and software) execution as the system runs.

Monitoring of TCB requires mechanisms to:
• Fingerprint and authenticate TCB code
• Monitor TCB execution
• Protect TCB code (on embedded security processor)

• Virtual Memory, ASLR, …

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019) 58

Performance Overhead of Securing TCB

Impact of threat model on performance:
• Protecting against more threats typically adds more overhead
• Memory encryption and integrity checking are the most expensive part,

but really depends on how defense is implemented

• Secure caches: 1~10% overhead
• Spectre protections: initially stated >10%, now most <10%
• Memory encryption: can be >100%

More protections, must not mean less performance:
• Partitioning
• Randomization is not always bad

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019) 59

Alternatives: FHE, FE, …

TEEs use trusted hardware and software to protect computation that is done in plaintext.

Cryptography-based approaches could be used, but they come at
tremendous performance cost and are not practical today.

• FHE – Fully Homomorphic Encryption
• FE –Function Encryption
• MPC – Multi-Party Computation
• RE – Randomized Encodings
• GES – Graded Encoding Scheme

60Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019)

Máté Horváth and Levente Buttyán
The Birth of Cryptographic Obfuscation -- A Survey

https://eprint.iacr.org/2015/412

Hardware Roots of Trust

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019)

Memory Protection

Multiprocessor and Many-core Protections

Side-Channels Threats and Protections

Principles of Secure Processor Architecture Design

Secure Processor Architectures

Trusted Execution Environments

61

14:00 – 14:10 Break

Root of Trust and the Processor Key

Security of the system is derived from a root of trust.

• A secret (cryptographic key)
only accessible to TCB components

• Derive encryption and signing keys
from the root of trust

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019)

Processor Chip

Cache

Uncore

Core
$ $

Core
$ Reg.…

Memory I/O Devices

FU State

SecE

KR

Hierarchy of keys can be derived
from the root of trust

KR

Km KSK KPK …

62

Root of Trust and Processor Key

Each processor requires a unique secret.

• Burn in at the factory by the manufacturer
(but implies trust issues with manufacturer
and the supply chain)

• E.g. One-Time Programmable (OTP) fuses

• Use Physically Uncloneable Functions
(but requires reliability)

• Extra hardware to derive keys from PUF
• Mechanisms to generate and distribute

certificates for the key

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019)

Processor Chip

Cache

Uncore

Core
$ $

Core
$ Reg.…

Memory I/O Devices

FU State

SecE

KR

63

Secrecy of Root of Trust Key Assumption

The unique processor key is assumed to be never disclosed to anybody.

• Manufacturer protects the keys
• Manufacturer is trusted to never disclose the keys

If using PUFs, then the trusted party doing the enrollment and key generation is trusted
• Trust enrolling party
• Or may need on-chip key generation facility

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019) 64

Derived Keys and Key Distribution

Derived form the root of trust are signing and verification keys.

• Public key, KPK, for encrypting data
to be sent to the processor

• Data handled by the TCB

• Signature verification key, KVK, for checking
data signed by the processor

• TCB can sign user keys

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019)

Emoji Image:
https://www.emojione.com/emoji/1f3ed

https://www.emojione.com/emoji/1f469-1f4bc
https://www.emojione.com/emoji/1f3e2

Processor Chip

KR

Cert
ID, KPK

Cert
ID, KPK

ID

ID

KSKKSigK

Cert
ID, KVK

Cert
ID, KVK

65

Key Distribution for PUF-based Designs

Designs that leverage PUF may require users or companies to run their own
key distribution solutions.

• Deploy own infrastructure
• Use a trusted 3rd party

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019)

Emoji Image:
https://www.emojione.com/emoji/1f3ed

https://www.emojione.com/emoji/1f469-1f4bc
https://www.emojione.com/emoji/1f3e2

Processor Chip

KR ID

KSKKSigK

PUF

66

Protected Root of Trust Assumption

The root of trust is assumed to be protected.

If keys are burned-in by the manufacturer
• Secret keys are only known to the manufacturer
• Manufacturer keeps secure database of the keys

If keys are derive from PUFs:
• Keys are certificates are generated on-chip
• Or, generated keys are only available to trusted enrolling party
• New keys can be regenerated or it is known if key was already generated and ”locked”

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019) 67

SMM

SecE

Hypervisor (VMM)

Software Measurement

With an embedded signing key, the software running in the TEE can be “measured” to attest to
external users what code is running on the system.

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019)

Hardware

Guest
OS

Guest
OS

Guest
OS

AppAppApp
AppAppApp

AppAppApp

…

Emoji Image:
https://www.emojione.com/emoji/1f469-1f4bc

When all levels
are trusted,
compute
cryptographic
hashes over
code and data
of each level.

Some
architectures,
e.g. SGX or
SEV, “skip”
untrusted
layers when
computing
hashes

68

Trusted / Secure / Authenticated Boot

When the system boots up, the software components of the TCB are measured:

• Abort when wrong measurement is obtained
• Or, continue booting but do not decrypt secrets

Any single bit change in the TCB software will give different measurement,
and prevent correct bootup:

• Legitimate software updates will change measurements

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019) 69

Remote Attestation

TCB can sign measurements taken and send a digital signature to the remote user:

• Measure the software after start up
• Send periodic measurements on request

• Requires continuous attestation based on
something other than hashes

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019)

Emoji Image:
https://www.emojione.com/emoji/1f469-1f4bc

https://www.emojione.com/emoji/1f3e2
https://www.emojione.com/emoji/2601

Processor Chip

IDCert
ID, KVK

Sig(Measurement)

70

Data Sealing (Remote)

Data can be sealed (encrypted) and correct decryption key can be only made available once
a measurement is verified.

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019)

Emoji Image:
https://www.emojione.com/emoji/1f469-1f4bc

https://www.emojione.com/emoji/2601

Processor Chip

Sig(Measurement)

Guest
OS

AppAppApp

Guest
OS

AppAppApp

…

E(key)

71

Disk

Data Sealing (Local)

Locally, the measurement, taken by the TCB, can be used to unlock data on storage
such as on hard disk (e.g. BitLocker).

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019)

Processor Chip

Sig(Measurement)

Guest
OS

AppAppApp

Guest
OS

AppAppApp

…

Disk

72

TOC-TOU Attacks and Measurements

Time-of-Check to Time-of-Use (TOC-TOU) attacks leverage the delay between when a
measurement is taken, and when the component is used.

• System can be compromised
• But measurement indicates correct data

Cannot easily use hashes to prevent TOC-TOU attacks, as one would have to have reference
hashes for all different possible runtime states of the software.

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019) 73

Continuous Monitoring of Protected Software

Continuous monitoring is potential solution to TOC-TOU:

• Constantly measure the system, e.g. performance counters, and look for anomalies
• Requires knowing correct and expected behavior of system
• Can be used for continuous authentication

Attacker can “hide in the noise” if they change the execution of the software slightly and do not affect
performance counters significantly.

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019) 74

Fresh Measurement Assumption

Authentication and data sealing give access to data to correctly executing software.

• Measurements used to un-seal data need to be fresh
• Revoke access if measurements change

• But data may have already leaked out

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019) 75

Limiting Execution to only Authorize Code

Firmware (TCB) updates or protected software can be authenticated in the processor
through use of signatures made by a trusted party.

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019)

Emoji Image:
https://www.emojione.com/emoji/1f3ed

https://www.emojione.com/emoji/1f469-1f4bc
https://www.emojione.com/emoji/1f3e2

Processor Chip

KR

Sig.

ID

KSKKSigK Cert
Mfg.

Code
+

Data

Auth.
Sign. Key

Sig.
Code

+
Data

76

Privacy and Lock-in Concerns

Privacy issue arise from the authentication mechanisms:
• If using private key directly each time, can know from which processor are the messages coming
• If the Certificate Authority is run by the manufacturer, they know exactly when the processor is

being used

Direct Anonymous Attestation (DAA) from TPM offers some protections while allowing for remote
authentication.

Lock-in issues arise from limiting what code can run on the system:
• Signature is required by 3rd party to get firmware update or software to run
• Depend on 3rd party for approval

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019) 77

Memory Protection

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019)

Multiprocessor and Many-core Protections

Side-Channels Threats and Protections

Principles of Secure Processor Architecture Design

Secure Processor Architectures

Trusted Execution Environments

Hardware Roots of Trust

78

Sources of Attacks on Memory

Memory is vulnerable to different types of attacks:
a) Untrusted software running no the processor

b) Physical attacks on the memory bus, other devices snooping on the bus, man-in-the-middle
attacks with malicious device

c) Physical attacks on the memory (Coldboot, …)

d) Malicious devices using DMA or other attacks

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019) 79

Types of Attacks on Memory

Different types of attacks exist (very similar to attacks in network settings):

• Snooping

• Spoofing

• Splicing

• Replay

• Disturbance

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019)

Passive attack, try to read data contents.

Active attack, inject new memory
commands to try to read or modify data.

Active attack, combine portions of legitimate
memory commands into new memory
commands (to read or modify data).

Active attack, re-send old memory
command (to read or modify data).

Active attack, DoS on memory bus,
repeated memory accesses to age circuits,
repeated access to make Rowhammer, etc.

80

Confidentiality Protection with Encryption

Contents of the memory can be protected with encryption. Data going out of the CPU is encrypted,
data coming from memory is decrypted before being used by CPU.

a) Encryption engine (usually AES in CTR mode) encrypts data going out of processor chip
b) Decryption engine decrypts incoming data

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019)

Pre-compute encryption pads, then only
need to do XOR; speed depends on how
well counters are fetched / predicted.

81

Integrity Protection with Hash Trees

Hash tree (also called Merkle Tree) is a logical three structure, typically a binary tree, where two
child nodes are hashed together to create parent node; the root node is a hash that depends on
value of all the leaf nodes.

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019) 82

Integrity Protection with Hash Trees

Memory blocks can be the leaf nodes in a Merkle Tree,
the tree root is a hash that depends
on the contents of the memory.

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019)

Hash tree nodes are stored in
(untrusted) main memory.

Counters are included in
hashes for freshness.

Cache

On-chip (cached) nodes are
assumed trusted, used to
speed up verification.

83

Integrity Protection with Bonsai Hash Trees

Message Authentication Codes (MACs) can be used instead of hashes, and a smaller
“Bonsai” tree can be constructed.

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019) 84

Key for MAC

Integrity Protection of Selected Memory Regions

• For encryption, type of encryption does not typically depend on memory configuration
• For integrity, the integrity tree needs to consider:

• Protect whole memory
• Protect parts of memory (e.g. per application, per VM, etc.)
• Protect external storage (e.g. data swapped to disk)

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019) 85

Memory Data on Disk

E.g., Bastion’s memory integrity tree
(Champagne, et al., HPCA ‘10)

Memory Access Pattern Protection

Snooping attacks can target extracting data (protected with encryption)
or extracting access patterns to learn what a program is doing.
• Easier in Symmetric multiprocessing (SMP) due to shared bus

• Possible in other configuration if there are untrusted components

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019) 86

Memory Access Pattern Protection

Access patterns (traffic analysis) attacks can be protected with use Oblivious RAM, such as Path
ORAM. This is on top of encryption and integrity checking.

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019) 87

Leveraging 2.5D and 3D Integration

With 2.5D and 3D integration, the memory is brought into the same package as the main processor
chip. Further, with embedded DRAM (eDRAM) the memory is on the same chip.
• Potentially probing attacks are more difficult
• Still limited memory (eDRAM around 128MB in 2017)

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019) 88

Security of Non-Volatile Memories and NVRAMs

• Non-volatile memories (NVMs) can store data even when there is no power
• Non-volatile random-access memory (NVRAM) is a specific type of NVM that is suitable to serve

as a computer system’s main memory, and replace or augment DRAM

• Many types of NVRAMs:
• ReRAM – based on memristors, stores data in resistance of a dialectric material
• FeRAM – uses ferroelectric material instead of a dialectric material
• MRAM – uses ferromagnetic materials and stores data in resistance of a storage cell
• PCM – typically uses chalcogenide glass where different glass phases have different resistances

Security considerations
• Data remanence makes passive attacks easier (e.g. data extraction)
• Data is maintained after reboot or crash (security state also needs to be correctly restored after

reboot or crash)

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019) 89

Features of Systems using NVRAMs

Persistence:
• Data persists across reboots and crashes, possibly with errors
• Need atomicity for data larger than one memory word

(either all data or no data is “persisted”)
• E.g. Write Pending Queue (WPQ) – memory controller

has non-volatile storage or enough stored charge to write
pending data back to the NV-DIMM or NVRAM

Granularity of persistence:
• Hide non-volatility from the system: simply use memory as DRAM replacement
• Expose non-volatility to the system: allow users to select which data is non-volatile

• Linux support through Direct Access (DAX) since about 2014
• Developed for NV-DIMMs (e.g., battery backed DRAM, but works for NVRAMs)

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019) 90

Image:
https://www.usenix.org/system/files/login/articles/login_summer17_07_rudoff.pdf

Persistence
domain

example

Integrity Protection of NVRAMs

• For integrity, the integrity tree needs to additionally consider:
• Atomicity of memory updates for data and related security state (so it is correct after reboot or a crash)
• Which data in NVRAM is to be persisted (i.e. granularity)

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019) 91

NVRAM Data on Disk
Persistent Data

Encrypted, Hashed, Oblivious Access Memory Assumption

Off-chip memory is untrusted and the contents is assumed to be protected from the snooping,
spoofing, splicing, replay, and disturbance attacks:

• Encryption – snooping and spoofing protection
• Hashing – spoofing, splicing, replay (counters must be used), and disturbance protection
• Oblivious Access – snooping protection

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019) 92

Multiprocessor and Many-core Protections

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019)

Side-Channels Threats and Protections

Principles of Secure Processor Architecture Design

Secure Processor Architectures

Trusted Execution Environments

Hardware Roots of Trust

Memory Protections

93

Multiprocessor Architectures

Symmetric Multi Processing (SMP) and Distributed Share Memory (DSM) also referred to as
Non-Uniform Memory Access (NUMA) offer two ways of connecting many CPUs together.

SMP DSM / NUMA

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019)

Individual processors are still
trusted

Emoji Image:
https://www.emojione.com/emoji/1f479

Other components
on the same system
are untrusted

94

SMP Protections

Encrypt traffic on the bus between processors
• Each source-destination pair can share a hard-coded key
• Or use distribute keys using public key infrastructure (within a computer)

Use MACs for integrity of messages
• Again, each source-destination pair can share a key

Use Merkle trees for memory protection
• Can snoop on the shared memory bus to update the tree root node

as other processors are doing memory accesses
• Or per-processor tree

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019) 95

DSM / NUMA Protections

Encrypt traffic on the bus between processors
• Again need a shared key

Use MACs for integrity of messages
• Again, each source-destination pair can share a key

Use Merkle trees for memory protection
• No-longer can snoop on the traffic (DSM is point to point usually)

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019) 96

Many-core Trust Boundary

Trusted processor chip boundary is reduced in most research focusing on many-core security

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019)

Processor Chip

Memory I/O Devices

The processor core is still
trusted

Emoji Image:
https://www.emojione.com/emoji/1f479

Other cores, interconnect,
or routing elements are
untrusted (malicious IP
core)

Probing of internal
interconnect still
assumed out-of-
scope.

97

Architecture and Hardware Security Intersection

With many-core chips, the threats architects worry about start to overlap
with hardware security researchers’ work

• Untrusted 3rd party intellectual property (IP) cores
• Malicious foundry
• Untrusted supply chain

Architecture solutions (add encryption, add hashing, etc.) complement
defenses developed by hardware security experts (split manufacturing, etc.).

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019) 98

Protected Inter-processor Communication Assumption

In addition to the existing assumption about protected memory communication,
designs with multiple processors or cores assume the inter-processor communication will be
protected:

• Confidentiality
• Integrity
• Communication pattern protection

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019)

Emoji Image:
https://www.emojione.com/emoji/1f479

99

Performance Challenges

Interconnects between processors are very fast:

• E.g. HyperTransport specifies speeds in excess of 50 GB/s
• AES block size is 128 bits
• Encryption would need 3 billion (giga) AES block encryptions or decryptions per second

• Tricks such as counter mode encryption can help
• Only XOR data with a pad
• But need to have or predict counters and generate the pads in time

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019) 100

Side Channel Threats and Protections

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019)

Principles of Secure Processor Architecture Design

Secure Processor Architectures

Trusted Execution Environments

Hardware Roots of Trust

Memory Protections

Multiprocessor and Many-core Protections

101

15:00 – 15:10 Break

Side and Covert Channels

A covert channel is an intentional communication between a sender and a receiver via a medium
not designed to be a communication channel.

In a side channel, the “sender”
in an unsuspecting victim and
the “receiver” is the attacker.

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019)

Processor
Chip

Emoji Image:
https://www.emojione.com/emoji/2668

https://www.emojione.com/emoji/1f469-1f4bc

1. “Sender”
application
runs.

2a. Physical change
or emanation is
created

Cache
2b. Or a change is
made to the state of
the system, such as
modify cache
contents

3. “Receiver” observes
the emanation or state
change

102

Covert Channels

Covert Channel – a communication channel that was not intended or designed to transfer
information, typically leverage unusual methods for communication of information,
never intended by the system’s designers

• Timing
• Power
• Thermal emanations
• Electro-magnetic (EM) emanations
• Acoustic emanations

Covert channel is easier to establish, a precursor to side-channel attack

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019) 103

Side Channels

Side Channel – is similar to a covert channel, but the sender does not intend to communicate
information to the receiver, rather sending (i.e. leaking) of information is a side effect of the
implementation and the way the computer hardware or software is used.

• Timing
• Power
• Thermal emanations
• Electro-magnetic (EM) emanations
• Acoustic emanations

Differentiate side channel from covert channel depending on who controls the “sender”

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019) 104

Side Channels – Victim to Attacker

Typically a side channel is from an unsuspecting victim to an attacker.

• Goal is to extract some information from victim
• Victim does not observe any execution behavior change

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019)

Emoji Image:
https://www.emojione.com/emoji/1f468-1f4bc
https://www.emojione.com/emoji/1f469-1f4bc

Victim’s operation
sends information
to attacker

Attacker obtains
information via
the side channel

105

Side Channels – Attacker to Victim

A side channel can also exist from attacker to victim.

• Attacker’s behavior can ”send” some information to the victim
• The information, in form of processor state for example, affects

how the victim behaves unbeknownst to them

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019)

Emoji Image:
https://www.emojione.com/emoji/1f468-1f4bc
https://www.emojione.com/emoji/1f469-1f4bc

Victim’s operation
depends on the
information sent
from attacker

Attacker
modulates some
information that is
sent to victim

106

E.g. modulate branch
predictor state to affect
execution of the victim

Timing Side Channels Inside a Processor

Many components of a modern processor pipeline can contribute to side channels.

Emoji Image:
https://www.emojione.com/emoji/2668

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019) 107

Sources of Timing Side Channels

Five source of side channels that can lead to attacks

1. Variable Instruction Execution Timing – Execution of different instructions takes different
amount of time

2. Functional Unit Contention – Sharing of hardware leads to contention, whether a program can
use some hardware leaks information about other programs

3. Stateful Functional Units – Program’s behavior can affect state of the functional units, and
other programs can observe the output (which depends on the state)

4. Memory Hierarchy – Data caching creates fast and slow execution paths, leading to timing
differences depending on whether data is in the cache or not

5. Physical Emanations – Execution of programs affects physical characteristics of the chip, such
as thermal changes, which can be observed

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019) 108

Variable Instruction Execution Timing

Computer architecture principles of pipelining and making common case fast drive processor
designs where certain operations take more time than others – program execution timing may reveal
which instruction was used.
• Multi-cycle floating point vs. single cycle addition
• Memory access hitting in the cache vs. memory access going to DRAM

Constant time software implementations can choose instructions to try to make software run in
constant time
• Arithmetic is easiest to deal with
• Caches may need to be flushed to get constant memory instruction timing
• No way to flush state of functional units such as branch predictor

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019) 109

Functional Unit Contention

Functional units within processor are re-used or shared to save on area and cost of the processor
resulting in varying program execution.
• Contention for functional units causes execution time differences

Spatial or Temporal Multiplexing allows to dedicate part of the processor for exclusive use by an
application
• Negative performance impact or need to duplicate hardware

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019) 110

Stateful Functional Units

Many functional units inside the processor keep some history of past execution and use the
information for prediction purposes.
• Execution time or other output may depend on the state of the functional unit
• If functional unit is shared, other programs can guess the state (and thus the history)
• E.g. caches, branch predator, prefetcher, etc.

Flushing state can erase the history.
• Not really supported today
• Will have negative performance impact

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019) 111

Timing Side Channels in Memory Hierarchy

Memory hierarchy aims to improve system performance by hiding memory access latency
(creating fast and slow executions paths); and parts of the hierarchy area a shared resource.

• Cache replacement logic
• Inclusive caches
• Non-inclusive caches
• Exclusive caches

• Prefetcher logic
• Also speculative instruction

fetching from processor core

• Memory controller
• Interconnect
• Coherence bus

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019)

Emoji Image:
https://www.emojione.com/emoji/2668

112

Timing Cache Side Channels

Sharing of cache between two programs can let attacker program learn some information about a
victim program based on observed timing of cache hits and misses.

E.g. Prime+Probe attack

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019) 113

Timing Side Channels due to Other Components

• Prefetcher – is used to prefetch data that may be used in figure
• Speculative Execution – data is fetched if an instruction is executed speculatively

• TLB – translation look aside buffer is another type of cache
• Page Walk Cache (PWC) in Intel processors, is a buffer inside TLB

• Memory Controller – controls the memory accesses and arbiters between different cores or
caches accessing the memory

• Interconnect – interconnect between different components within the chip

• Coherence bus – interconnect between the chip and other chips or memory

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019) 114

Meltdown

Meltdown vulnerability can be used to break isolation between user applications and the operating
system.

1. Attempt to read data from kernel memory
(mapped into address space of application)

2. Before an exception is raised, following instructions
are speculatively executed

3. Exception is raised, however…

4. Cache state is modified

5. Processor cleans up the state, but data is left in cache

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019) 115

Meltdown

Meltdown combines multiple attacks:

• Out-of-order execution causes permission checks to be done after operation already executes
(only affects some processors)

• Cache state is not cleaned up, so one application can observe what the other did

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019) 116

Spectre

Spectre vulnerability can be used to break isolation between different applications.

1. Attacker “trains” branch predictor
2. If statement in example is executed

(predicted true)
3. Secret data from array1 is used as index to array2

4. Cache state is modified

5. Branch is resolved, processor cleans up the state,
but data is left in cache

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019) 117

Spectre

Spectre combines multiple attacks:

• Branch predictor state is not cleaned up, so one application can affect another
• Cache state is not cleaned up, so one application can observe what the other did

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019) 118

Foreshadow

Foreshadow vulnerability is similar to Spectre, but targets Intel SGX.

• Attack allows for speculative access to protected data in SGX memory
• Data is encrypted in DRAM
• But data is unencrypted in caches

• If the protected data is loaded into L1 cache by the victim (SGX enclave),
attacker may be able to speculatively access it before processor determines
that the access is forbidden.

• Difficult to exploit for true attack due to timing and data having to be in L1 cache

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019) 119

Classical vs. Speculative Side-Channels

Side channels can now be classified into two categories:
• Classical – which do not require speculative execution
• Speculative – which are based on speculative execution

Difference is victim is not fully in control of
instructions they execute (i.e. some instructions are
executed speculatively)

Root cause of the attacks remains the same

Defending classical attacks defends speculative
attacks as well, but not the other way around

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019) 120

State of functional unit is modified by victim
and it can be observed by the attacker via
timing changes

Focusing only on speculative attacks does
not mean classical attacks are prevented,
e.g. defenses for cache-based attacks

Speculation Window

Key concept for speculative side-channel attacks is the speculation window

Speculation window:
• Amount of time from when a speculatively

executed instructions start to issue,
until when the instruction is squashed
or becomes non-speculative

• Whole attack has to fit into speculation window
• E.g. cache Flush+Reload attack requires to fetch

data from main memory, thus window has
to be bigger than about 300 cycles

• E.g. Foreshadow attack requires fetch from L1 cache,
so few cycles window is enough

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019) 121

Cache and Memory Access Latencies

L1 1 cycle
L2 10 cycles
L3 50 cycles
Memory 200~300 cycles

Side Channels due to Physical Emanations

Side-channels can be also observed from outside of the computer system, notably through physical
emanations.

• Thermal
• Electromagnetic
• Acoustic

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019)

Require measuring temperature. Thermal channels
possible in data centers without physical presence.

Require measuring EM radiation. Today need
dedicated equipment.

Require measuring sound. Today need dedicated
equipment.

122

Timing Side Channel Bandwidths

The Orange Book, also called the Trusted Computer System Evaluation Criteria (TCSEC), specifies
that a channel bandwidth exceeding a rate of 100 bps is a high bandwidth channel.

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019) 123

Side Channel Classification
Attacker

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019)

Attacks from
outside of the

processor
chip

Attacks
from within
Processor

chip

Does not require
hardware Trojan or
malicious hardware
modifications;
hardware Trojan
attacks are separate.

Observation of victim’s
behavior

Observation of attacker’s
own behavior

Acoustic,

E.g. sensors
such as thermal
sensors

124

Timing Channel Defense Strategies

Hardware and software based defenses are possible. Most will result in performance degradation.

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019) 125

Secure Caches to Defend Side Channels

Numerous academic proposals have presented different secure cache architectures
that aim to defend against different cache-based side channels.

Approximate evaluation of 10 secure cache proposals:

Partitioning and randomization are most effective techniques used in these caches

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019) 126

Example: Intel’s Side Channel Defenses

Intel’s Resource Director Technology (RDT) provides the hardware framework to monitor and
manage shared CPU resources, like cache and memory bandwidth.

• Cache Monitoring Technology (CMT)
• Memory Bandwidth Monitoring (MBM)
• Cache Allocation Technology (CAT)
• Code and Data Prioritization (CDP)
• Memory Bandwidth Allocation (MBA)

Shared units inside the processor (e.g. branch predictor) so far not considered,
but could be important to protect.

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019) 127

Side Channel Free TEE Assumption

The protected software assumes that the TEE is side channel free.

• TCB hardware and software should clean up processor state to remote any side channels
• Memory hierarchy should defend protected software from side channels

Protected software still needs to defend against internal interference channels
• Software’s own memory accesses interfere with each other
• Best to write constant time software

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019) 128

Side Channels as Attack Detectors

Side channels can be used to detect or observe system operation.

• Measure timing, power, EM, etc. to detect unusual behavior
• Similar to using performance counters, but attacker doesn’t know measurement is going on

Tension between side channels as attack vectors vs. detection tools.
• Side channels are mostly used for attack today

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019) 129

Industry Standards for Evaluating System’s Security

Orange Book or the Trusted Computer System Evaluation Criteria (TCSEC)
• Replaced by Common Criteria
• Standard for assessing the effectiveness of a computer system’s security controls

Common Criteria
• Standard for computer security certification

FIPS 140-2
• Standard defining security levels for cryptogrphic modules

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019) 130

Principles of Secure Processor Architecture Design

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019)

Secure Processor Architectures

Trusted Execution Environments

Hardware Roots of Trust

Memory Protections

Multiprocessor and Many-core Protections

Side Channel Threats and Protections

131

Traditional computer architecture has six principles regarding processor design:

• Caching

• Pipelining

• Predicting

• Parallelizing

• Use of indirection

• Specialization

What are principles for secure architectures?

E.g. caching frequently used data in a small but fast memory helps hide data
access latencies.

Principles of Computer Architecture

E.g. predict control flow direction or data values before they are actually
computed allows code to execute speculatively.

E.g. processing multiple data in parallel allows for more computation to be
done concurrently.

E.g. virtual to physical mapping abstracts away physical details of the system.

E.g. break processing of an instruction into smaller chunks that can each be
executed sequentially reduces critical path of logic and improves
performance.

E.g. custom instructions use dedicated circuits to implement operations that
otherwise would be slower using regular processor instructions.

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019) 132

Review of Secure Processor Assumptions

Assumptions and how they are broken:

• Trusted Processor Chip Assumption
• Small TCB Assumption
• Open TCB Assumption
• No Side-Effects Assumption
• Benign Protected Software Assumption
• Trustworthy TCB Execution Assumption
• Protected Root of Trust Assumption
• Fresh Measurement Assumption
• Encrypted, Hashed, Oblivious Access Memory Assumption
• Protected Inter-processor Communication Assumption
• Side Channel Free TEE Assumption

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019)

Invasive attacks, hardware Trojans, supply
chain attacks

Code bloat, proprietary code running on
embedded security processor

State in functional units not cleaned up

Malware hidden in TEE

No means to monitor TCB execution

Compromised manufacturer database

TOC-TOU attacks and no continuous measurement

Lack of encryption, hashing or ORAM
due to performance issues

Lack of side channel protections

133

Principles of Secure Processor Architecture Design

Four principles for secure processor architecture design based on existing designs and also on
ideas about what ideal design should look like.

1. Protect Off-chip Communication and Memory
2. Isolate Processor State between TEE Execution
3. Allow TCB Introspection
4. Authenticate and Continuously Monitor TEE

Additional design suggestions:
• Avoid code bloat
• Minimize TCB
• Ensure hardware security (Trojan prevention, supply chain issues, etc.)
• Use formal verification

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019) 134

Protect Off-chip Communication and Memory

Off-chip components and communication are untrusted, need protection with encryption, hashing,
access pattern protection.

Open research challenges:
• Performance
• Key distribution

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019)

Processor Chip

Cache

Uncore

Core
$ $

Core
$ Reg.…

Memory I/O Devices

FU State

SecE

$ Reg. FU State

Cache

SecE Uncore
Enc

E.g. encryption defends
Cold boot style attacks on
main memory.

135

Isolate Processor State between TEE Execution

When switching between protected software, need to flush the state, or save and restore it,
to prevent one software influencing another.

Open research challenges:
• Performance
• Finding all the state to flush or clean
• ISA interface to allow state flushing

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019)

Processor Chip

Cache

Uncore

Core
$ $

Core
$ Reg.…

Memory I/O Devices

FU State

SecE

$ Reg. FU State

Cache

SecE Uncore

E.g. flushing state defends
Spectre and Meltdown type
attacks.

136

Allow TCB Introspection

Need to ensure correct execution of TCB, through open access to TCB design, monitoring,
fingerprinting, and authentication.

Open research challenges:
• ISA interface to introspect TCB
• Area, energy, performance costs

due extra features for introspection
• Leaking information about

TCB or TEE

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019)

Processor Chip

Cache

Uncore

Core
$ $

Core
$ Reg.…

Memory I/O Devices

FU State

SecESecE

E.g. open TCB design can
minimize attacks on ME or
PSP security engines

137

Authenticate and Continuously Monitor TEE

Monitoring of software running inside TEE, e.g. TSMs or Enclaves, gives assurances about the state
of the protected software.

Open research challenges:
• Interface design for monitoring
• Leaking information about TEE

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019)

Guest
OS

Hardware

AppAppApp

SMM

SecE

HV

TSM

E.g. continuous monitoring
of a TEE can help prevent
TOC-TOU attacks.

138

Pitfalls and Fallacies

• Pitfall: Security by Obscurity

• Fallacy: Hardware Is Immutable

• Pitfall: Wrong Threat Model

• Pitfall: Fixed Threat Model

• Pitfall: Use of Outdated or Custom Crypto

• Pitfall: Not Addressing Side Channels

• Pitfall: Requiring Zero-Overhead Security

• Pitfall: Code Bloat

• Pitfall: Incorrect Abstraction

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019)

E.g. recent attacks on industry processors.

Most actually realized architectures use a security
processor (e.g. ME or PSP).

E.g. original SGX did not claim side channel
protection, but researchers attacked it.

Most designs are one-size-fits all solutions.

E.g. today’s devices will be in the field for many years,
but do not use post-quantum crypto.
Most architectures underestimate side channels.

Performance-, area-, or energy-only focused designs
ignore security.

E.g. rather than partition a problem, large code pieces
are ran instead TEEs; also TCB gets bigger and
bigger leading to bugs.

Abstraction (e.g. ISA assumptions) does not match
how device or hardware really behaves.

139

Pitfalls and Fallacies

• Pitfall: Focus Only on Speculative Attacks

• …

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019) 140

Defending only speculative attacks does not ensure
classical attacks are also protected

Challenges in Secure Processor Design

A number of challenges remain in research on secure processor designs:

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019)

State
Flushi

ng

Fast
Crypto

&
Hash

Side
Chann

els
TOC-
TOU

Verific
ation

Attack
Recov

eryData
Reman
ence

ISA
Interfa

ce

Perfor
mance

Usabili
ty

Key
Distrib
ution

TCB
Cost

141

The Book

Jakub Szefer, ”Principles of Secure Processor
Architecture Design,” in Synthesis Lectures on
Computer Architecture, Morgan & Claypool
Publishers, October 2018.

http://caslab.csl.yale.edu/books/

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019) 142

Summer Course on Processor Architecture Security

Who: Jakub Szefer

What: Summer Course on Processor Architecture Security

Where: at the 15th International Summer School on Advanced Computer Architecture and
Compilation for High-Performance and Embedded Systems (ACACES), in
Rome, Italy

When: Sunday evening July 14th, 2019 until Friday evening July 19th, 2019

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019) 143

Acknowledgement

Work on this tutorial was possible in part through support from NSF grants number 1716541,
1524680, and NSF CAREER award number 1651945.

Presentation of past tutorials were made possible in part by Yale University.

Special thanks to students Wenjie Xiong, Wen Wang, Shuwen Deng, Shanquan Tian,
and visiting student Shuai Chen, for presentation feedback.

And thanks to past tutorial participants for suggestions and their feedback on improving the slides.

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019) 144

Thank You!

Tutorial on Principles of Secure Processor Architecture Design
© Jakub Szefer (ver. HPCA 2019) 145

