
Decay-Based DRAM PUFs
in Commodity Devices

Andr�e Schaller , Wenjie Xiong , Nikolaos Athanasios Anagnostopoulos , Muhammad Umair Saleem,

Sebastian Gabmeyer, Boris �Skori�c , Stefan Katzenbeisser, and Jakub Szefer

Abstract—A Physically Unclonable Function (PUF) is a unique and stable physical characteristic of a piece of hardware, which

emerges due to variations in the hardware fabrication processes. Prior works have demonstrated that PUFs are a promising

cryptographic primitive that can enable secure key storage, hardware-based device authentication and identification. So far, most PUF

constructions have required an addition of new hardware or an FPGA implementation for their operation. Recently, intrinsic PUFs,

which can be found in commodity devices, have been investigated. Unfortunately, most of them suffer from the drawback that they can

only be accessed at boot time. This paper focuses on a new class of run-time accessible, decay-based, intrinsic DRAM PUFs in

commercial off-the-shelf systems, which requires no additional hardware or FPGAs. In order to enable secure key storage using DRAM

PUFs, this work presents a new Helper Data System (HDS) specifically tailored to the properties of the decay process inherent to

DRAM cells. The decay-based DRAM PUF and the new HDS are evaluated on commodity off-the-shelf devices to demonstrate their

practicality. Furthermore, a novel lightweight protocol is presented that allows for mutual authentication.

Index Terms—Physically unclonable functions, helper data schemes, device authentication

Ç

1 INTRODUCTION

MINIATURIZATION and cost reduction of processors and
System-on-Chip designs have enabled the creation of

almost ubiquitous smart devices, from smart thermostats
and appliances, to smart phones and embedded car enter-
tainment systems. With the proliferation of smart devices,
new security vulnerabilities are constantly discovered, e.g.,
[1], [2], [3], [4]. One major concern is that these devices often
lack implementation of sufficient security mechanisms [5],
[6]. The lack of secure hardware components, as well as
constraints on memory and computational power concern
the security of these devices. Establishing means of provid-
ing robust device authentication and identification mecha-
nisms, and means to store long-term cryptographic keys in
a secure manner that minimizes the chances of their illegiti-
mate extraction or access are particularly demanding.

A common approach to device identification is to embed
cryptographic keys in each device by burning them in at
manufacturing time. However, this solution comes with
potential pitfalls, such as increased production complexity

as well as rather limited protection against key extraction
attempts [7]. As an alternative, researchers have proposed
Physically Unclonable Functions (PUFs). PUFs leverage the
unique behavior of a device due to manufacturing varia-
tions as a hardware-based fingerprint. Since the exact varia-
tions present in one device are extremely difficult to
replicate in another device, even by the manufacturer, PUFs
cannot be easily cloned. Moreover, the variations are stable,
robust, and unique to each device. Hence, PUFs have been
proposed as cryptographic building blocks for security
primitives and protocols, such as authentication and identi-
fication [8], [9], [10], hardware-software binding [11], [12],
[13], [14], [15], remote attestation [16], [17], and secret key
storage [18], [19]. So far, most types of PUFs in digital elec-
tronic systems (such as arbiter PUFs [8], [20]) require the
addition of dedicated circuits to the device and thus
increase manufacturing costs and hardware complexity.
Consequently, there is great interest in so-called intrinsic
PUFs [11], which are PUFs that rely on hardware compo-
nents that are inherent to virtually any device. Two exam-
ples are Static Random-Access Memory (SRAM) based
PUFs, and Dynamic Random Access Memory (DRAM)
based PUFs. DRAM PUFs are focus of this work.

Intrinsic PUFs are an attractive, low-cost security anchor,
as they provide PUF instances within standard hardware
that can be found in commercial off-the-shelf devices [21],
[22], and thus do not require any hardware modifications.
The most prominent example of intrinsic PUFs are those
based on the aforementioned SRAM modules [13], [14],
[23], [24], [25], which draw their characteristics from the
startup values of bi-stable SRAM cells. SRAM PUFs are
known to have good PUF characteristics [26]. However,
PUF measurements must be extracted during a very early
boot stage (before the SRAM is written to). Consequently,

� A. Schaller, N.A. Anagnostopoulos, M.U. Saleem, S. Gabmeyer, and
S. Katzenbeisser are with Technische Universit€at Darmstadt, Darmstadt,
Hessen 64289, Germany. E-mail: {schaller, anagnostopoulos, gabmeyer,
katzenbeisser}@seceng.informatik.tu-darmstadt.de, muhammadumair.
saleem@stud.tu-darmstadt.de.

� W. Xiong and J. Szefer are with Yale University, New Haven, CT 06520.
E-mail: {wenjie.xiong, jakub.szefer}@yale.edu.

� B. �Skori�c is with the Department of Mathematics and Computer Science,
Eindhoven University of Technology, Eindhoven 5612 AZ, Netherlands.
E-mail: b.skoric@tue.nl.

Manuscript received 4 May 2017; revised 18 Jan. 2018; accepted 27 Mar.
2018. Date of publication 6 Apr. 2018; date of current version 10 May 2019.
(Corresponding author: Andr�e Schaller.)
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TDSC.2018.2822298

462 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 16, NO. 3, MAY/JUNE 2019

1545-5971� 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-2491-3536
https://orcid.org/0000-0003-2491-3536
https://orcid.org/0000-0003-2491-3536
https://orcid.org/0000-0003-2491-3536
https://orcid.org/0000-0003-2491-3536
https://orcid.org/0000-0002-7626-2651
https://orcid.org/0000-0002-7626-2651
https://orcid.org/0000-0002-7626-2651
https://orcid.org/0000-0002-7626-2651
https://orcid.org/0000-0002-7626-2651
https://orcid.org/0000-0003-0243-8594
https://orcid.org/0000-0003-0243-8594
https://orcid.org/0000-0003-0243-8594
https://orcid.org/0000-0003-0243-8594
https://orcid.org/0000-0003-0243-8594
https://orcid.org/0000-0003-1409-4127
https://orcid.org/0000-0003-1409-4127
https://orcid.org/0000-0003-1409-4127
https://orcid.org/0000-0003-1409-4127
https://orcid.org/0000-0003-1409-4127
https://orcid.org/0000-0001-9721-3640
https://orcid.org/0000-0001-9721-3640
https://orcid.org/0000-0001-9721-3640
https://orcid.org/0000-0001-9721-3640
https://orcid.org/0000-0001-9721-3640
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:

the derived key can only be used at this time, or must be
saved in some external memory, which may itself cause
new security problems by exposing the key to malicious
extraction attempts. Recently, a new error-based SRAM
PUF, which can be accessed at run-time, was proposed [27].
However, to query the PUF, the supply voltage needs to be
lowered to induce errors in SRAM cells, requiring special
hardware in the processor.

Meanwhile, Dynamic Random-Access Memory PUFs
have been proposed recently [28]. One approach to extract
unique DRAM behavior induced by manufacturing varia-
tions relies on startup tendencies of DRAM cells [29], [30],
[31]. Another approach to extract DRAM PUFs is to leverage
the unique decay characteristics of DRAM cells and exploit
the fact that charges of individual DRAM cells, if not
refreshed, decay over time in a unique manner [31], [32].
PUF responses1 can be generated by initializing DRAM cells
with a specific value, disabling DRAM refresh cycles, and
letting the cells decay for a defined decay time. As a result of
this decay, a DRAM chip exhibits bit flips at various loca-
tions within the memory. The unique distribution of loca-
tions of the bit flips can be used as a PUF response. Prior to
our recent work [33], state of the art required custom hard-
ware or FPGA-based platforms [28], [29], [30], [31], [32] in
order to modify the DRAM refresh mechanism such that
DRAM PUF extraction is possible.

1.1 Contributions to Decay-Based DRAM PUF
Design

Our research is the first to deal with decay-based DRAM
PUFs in commodity devices. This paper is an expanded ver-
sion of our conference publication [33], which introduced
intrinsic DRAM PUFs. This work extends the prior paper
with the following contributions:

� Enhanced evaluation of decay-based DRAM PUFs
compared to [33], with measurements using decay
times that are up 6� faster, covering larger memory
regions and wider temperature ranges on 9 devices
covering two different kinds of commodity off-the-
shelf platforms; extended time stability measure-
ments spanning 16 months in total.

� Design of a novel, lightweight, and compact Helper
Data System, specifically tailored towards decay-
based DRAM PUFs, enabling efficient key storage.

� Development of a lightweight authentication proto-
col that achieves mutual authentication.

1.2 Related Work on PUFs

A Physically Unclonable Function (PUF) has shown to be a
promising cryptographic primitive. Different PUF imple-
mentations have been proposed, e.g., delay-based PUFs and
memory-based PUFs. Delay-based PUFs often require dedi-
cated circuits, such as arbiters and ring oscillators [8], [20]. In
contrast, memory-based intrinsic PUFs leverage variations in
storage cells already present on the computing devices, such
as SRAM [23], [24], [25], [26], Flash memory [34], [35], and
DRAM. The earliest approach to exploit manufacturing var-
iations of DRAM cells for identification and random number

generation was reported in [28], [36], where a DRAM chip is
designed to generate fingerprints to mitigate hardware coun-
terfeiting. In subsequent work, through a memory controller
synthesized in an FPGA, Keller et al. [32] proposed to use the
decay of external DDR3 modules for extracting random bits
and unique identifiers. Lui et al. [37] evaluated the unique-
ness, robustness, and min-entropy of external DRAM mod-
ules using an FPGA setup, and proposed a secure key storage
scheme. Hashemian et al. [38] designed a circuit exploiting
the varying reliability during write cycles of DRAM cells and
presented an authentication scheme based on such generated
signatures. Rehmati et al. [39] made use of the error patten in
approximate DRAM as a system fingerprint. Tehranipoor
et al. [29], [30] exploit startup values of DRAM cells to extract
a device signature. Sutar et al. [31] evaluated the DRAM PUF
with an FPGA setup and proposed an authentication scheme
with reduced authentication time by reconfiguring the
DRAM for different decay times.

Unlike this work, all previous research required dedi-
cated circuits to be designed or FPGAs to be used. To the
best of our knowledge, our work in [33] and the extended
work presented in this paper are the first contributions that
focus on intrinsic decay-based DRAM PUF instances in
commodity devices, accessible at run-time. We also provide
a system-level solution for querying the PUF while a Linux
OS is running on the same hardware and actively using the
DRAM chip wherein the PUF is located.

1.3 Decay-Based DRAM PUFs in Commodity
Devices

Our research shows that a run-time accessible PUF can be
constructed from the decay behavior of DRAM that is part
of unmodified commodity devices, including the Panda-
Board and the Intel Galileo platforms. Two approaches are
evaluated: (i) accessing the PUF at device startup using a
customized firmware, and (ii) querying the PUF using a ker-
nel module at run-time.

Through extensive experiments on multiple instances of
two types of commodity devices, we show that DRAM PUFs
exhibit robustness, uniqueness, and in particular allowusage
of the decay time as part of the PUF challenge. Especially,
evaluations of shorter decay times, which are up to 6 times
faster, and larger memory regions of 16MB give extensive
insights into the practicality of decay-basedDRAMPUFs.

In [33] we introduced new metrics for evaluating DRAM
PUFs, based on the Jaccard index, and showed that they
are, in contrast to classic Hamming distance-based metrics,
better suited regarding the particular properties of decay-
based DRAM PUFs. The inter and intra Jaccard index were
used to compare uniqueness and robustness of DRAM
PUFs. We further estimated the entropy contained in the
PUF measurements by means of the Shannon entropy.

In this work, we present a novel Helper Data System
(HDS) tailored to the properties of decay-based DRAM
PUFs, which incorporates an enrollment phase that uses a
few quick measurements to locate fast-decaying cells, and
one long-timescale measurement to locate slowly decaying
cells. Only exceptionally fast and slow cells are selected as
input to the HDS. Our selection method solves the problem
of large biases towards ‘0’ or ‘1’ in the PUF measurements
that occur due to the vast discrepancy between the number

1. In the following we will use the terms PUF measurement and PUF
response interchangeably.

SCHALLER ET AL.: DECAY-BASED DRAM PUFS IN COMMODITY DEVICES 463

of fast cells and the much higher amount of slow cells. We
further optimize the proposed HDS towards the properties
of the devices under test, to only require a single enrollment
measurement. The described HDS is very simple to imple-
ment and considerably compact, as the relevant helper data
require only minimal memory space to be stored. The HDS
is experimentally validated to work even for highly biased
PUF measurements.

We also present a new lightweight, mutual PUF-based
authentication protocol. It can be used in resource-
constrained deviceswhich implementDRAM, but do not pos-
sess the processing power to run the costly cryptographic
algorithms, such asmany of the smart devices found today.

1.4 Outline

The remainder of the paper is organized as follows. Section 2
presents background on DRAM, introduces our decay-based
DRAM PUF and discusses security assumptions. Implemen-
tation details of the DRAMPUF on two evaluation platforms
are given in Section 3. Section 4 contains our evaluation of
DRAMPUFs characteristics extracted frommultiple devices.
In Section 5 we present a Helper Data System suitable for
key storage in DRAM PUFs. In Section 6 we present a novel
lightweight authentication protocol that uses the DRAM
PUF.We finally conclude our work in Section 7.

2 DRAM PUFS IN COMMODITY DEVICES

Fig. 1 shows an array of typical DRAM cells. A single
DRAM cell stores a charge in a capacitor and can be
accessed through a transistor. DRAM cells are grouped into
arrays, where each row of the array is connected to a hori-
zontal word-line and DRAM cells in the same column are
connected to the same bit-line. All bit-lines are coupled to
equalizers and sense-amplifiers that amplify voltages on
bit-lines to levels such that they can be interpreted as logical
zeros or ones. In order to access a row, all bit-lines will be
precharged to half the supply voltage VDD/2. Subsequently
the connected word-line is enabled, activating every transis-
tor in that line and allowing charges form the capacitors to
flow to their associated bit-lines. The sense amplifier then
drives the bit-line to VDD or 0V, depending on the charge
that was stored on the capacitor. The amplifiers are usually

shared by two bit-lines [40], of which only one can be
accessed at the same time. This structure makes the two bit-
lines complementary, which results in two kinds of cells:
true-cells and anti-cells. True-cells store the value ‘1’ as VDD

and ‘0’ as 0V on the capacitor, while anti-cells store the
value ‘0’ as VDD and ‘1’ as 0V.

DRAM cells require periodic refresh of the stored
charges, as otherwise the capacitors lose their charge over
time, which is referred to as DRAM cell decay or leakage. The
hardware memory controller takes care of periodic refresh,
whose interval is defined by the vendor, and is usually
32 ms or 64 ms. Without this periodic refresh, the logical
value of true cells decay to ‘0’, while anti-cells decay to ‘1’.
Because of the manufacturing variations among DRAM
cells, some cells decay faster than others. The unique decay
characteristics of individual DRAM cells can be exploited
for a decay-based DRAM PUF, as our research shows.

2.1 Decay-Based PUFs in DRAM

The process of exploiting the unique decay behavior of
DRAM cells in order to extract a PUF measurement is sum-
marized in Fig. 2. The starting point (a) comprises the
DRAM module being configured for ordinary use, where
the memory controller periodically refreshes all of the cells’
content. In a first step (b), the PUF memory region, defined
by starting address (addr) and size (size), is reserved such
that it does not contain any user-space or operating system
(OS) programs. This region is depicted as a shaded gray
rectangle in the figure. The reservation can be implemented
using memory ballooning introduced later in Section 2.2.
Furthermore, the refresh for the PUF region is disabled and
the initialization value (iv) is written to the region. Next, (c)
for a given decay time (t), the memory region containing the
PUF is not accessed to let the cells decay. After the decay
time has expired, (d) the memory content is read in order to
extract the PUF measurement. At the end, (e) the normal
operating condition of the memory is restored and the
memory region is made available to the OS again.

Memory regions within a DRAM module that are used
for obtaining PUF measurements are called logical DRAM
PUFs. For a particular DRAM, each logical PUF is deter-
mined by: (i) addr, the starting address of the logical PUF,
and (ii) size, its size, as discussed above. A typical DRAM
memory module can then be divided into thousands or
more logical PUFs.

Fig. 1. A single DRAM cell consists of a capacitor and a transistor,
connected to a word-line (WL) and a bit-line (BL or BL*); arrows indicate
leakage paths for dissipation of charges that lead to PUF behavior.

Fig. 2. Five steps required for run-time access of a DRAM PUF. Only
during steps (b)—(d) the memory associated with the PUF is not usable
for any other processes.

464 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 16, NO. 3, MAY/JUNE 2019

Two additional parameters are needed to define a
DRAM PUF challenge, the initialization value (iv) that will
be written to the DRAM PUF cells before any decay pro-
cess starts, and the desired decay time (t). After the decay
time has expired, enough charge has leaked from some
cells such that their stored logical bits have flipped. As the
positions of the flipped bits are unique for individual
DRAM regions, the “pattern” of decayed bits, also referred
to as flipped bits, for a given decay time t serves as the
PUF response.

In order to derive a cryptographic key from the PUF
response using a minimum number of DRAM cells, the
entropy within a logical DRAM PUF response needs to be
maximized. The value stored in a DRAM cell before it
decays, iv, plays an important role, as some DRAM cells
decay to ‘0’ and some to ‘1’. Thus, for example, if a cell
decays to ‘0’, but its initialization value is set to ‘0’, the
decay effect cannot be observed. If the physical layout of the
DRAM module is known (i.e., the distribution of true-cells
and anti-cells, and hence the individual decay directions), it
is possible to construct an initialization value that maxi-
mizes the number of observable bit flips in the PUF
response. However, the physical layout is rarely known.
Furthermore, the optimal initialization value would need to
be part of the challenge, or it would have to be stored on the
device. In our evaluation, we use a fixed initialization value
iv of ‘0’ for all cells within the memory being used as PUF.
Thus, the entropy of our measurements can further be
improved if the initialization value is varied so that each
cell is initialized with a logical value that corresponds to a
state, where charge is stored on the cells’ capacitor (i.e., ‘1’
for true-cells, and ‘0’ for anti-cells).

Overall, the challenge of a DRAM PUF consists of PUFid

and t, where PUFid denotes the logical PUF instance (addr
and size) and t denotes the decay time after which the mem-
ory content is read. In our experiments we fixed the value of
iv, hence we do not specify the parameter explicitly.

Although SRAM and DRAM PUFs are both considered
weak PUFs [41], the DRAM PUF presented in this paper
offers multiple challenges due to the ability to vary decay
times t. Given two PUF measurements mx and mxþ1 from
the same logical PUFid, taken at decay times tx and txþ1

(txþ1 � tx), both mxþ1 and mx can serve as PUF responses.
We denote the set of addresses of decayed (i.e., “flipped”)
DRAM cells at decay time t as sðtÞ. With increasing decay
time t, the number of DRAM cells flipping is monotonically
increasing. In particular, mxþ1 consists of a number of newly
flipped bits as well as the majority2 of bits that already
flipped in mx. In general, if tx � txþ1 and addrx ¼ addrxþ1;
sizex ¼ sizexþ1, we observe sðtxÞ � sðtxþ1Þ, up to noise.
However, note that it is not possible to measure responses
for several decay times t0; t1; . . . ; tn at once. In particular,
reading the PUF response at one decay time will cause the
memory to be refreshed (the cells are re-charged, as data is
read from DRAM cells into row buffers). Querying a PUF
response with a different decay time thus requires to restart
the experiment.

2.2 Run-Time DRAM PUF Access

Deactivating DRAM refresh for PUF access during device
operation is a non-trivial task: when DRAM refresh cycles are
disabled, critical data (such as data belonging to the OS or
user-space programs) will start to decay and the system will
crash. In our experiments, the Intel Galileo board running
Yocto Linux crashes about one minute after DRAM refresh is
disabled. Therefore, we present a customized solution, which
allows us to refresh critical code but leaves memory regions
dedicated to PUF usage untouched. This solution is based on
two techniques dubbed selective DRAM refresh and memory
ballooning. The former allows for selectively refreshing mem-
ory regions occupied by the OS and other critical applications
so that they run normally and do not crash. Memory balloon-
ing, on the other hand, safely reserves thememory region that
corresponds to a logical PUF without corrupting critical data
and also protects thememory region from accesses byOS and
user-space programs, to allow the DRAM cells to decay with-
out being disturbed during the PUFmeasurements.

Selective DRAM Refresh. On some devices, such as the
PandaBoard, DRAM consists of several physical modules or
logical segments, where the refresh of each module/seg-
ment can be controlled individually. In this case, the PUF
can be allocated in a different memory segment from the OS
and user-space programs. When challenging the PUF, only
the refresh of the segment holding the PUF is deactivated,
while the other segments remain functional.

On other devices, e.g., the Intel Galileo, the refresh rate
can only be controlled at the granularity of the entire
DRAM.3 Refresh at segment granularity is not possible.
However, memory rows can be refreshed implicitly once
they are accessed due to a read or a write operation. When a
word line is selected because of a memory access, the sense
amplifier drives the bit-lines to either the full supply voltage
VDD or back down to 0V, depending on the value that was
in the cell. In this way, the capacitor charge is restored to
the value it had before the charge started to leak. Using the
above principle, even if refresh of the whole memory is dis-
abled, selective memory rows can be refreshed by issuing a
read to a word within each of the selected memory rows
periodically. This functionality can be implemented in a
kernel module by reading a word within each memory row
to be refreshed (Section 3).

Ballooning SystemMemory. To query a chosen logical PUF,
the DRAM portion given by addr and size is overwritten by
the respective initialization value (iv) and refresh is deacti-
vated. To prohibit applications from accessing the PUF and
thus implicitly refreshing them, we use memory ballooning
concepts developed for virtual machines [42]. Memory bal-
looning is a mechanism for reserving a portion of the mem-
ory so as to prevent the memory region from being used by
the kernel or any application. This approach allows to spec-
ify the physical address (addr) and size (size) of the PUF
memory region that will be reserved. Once PUF memory is
“ballooned”, DRAM refresh can be disabled and selective

2. Due to noise, the set of flipping cells for a fixed time tx will not be
completely stable. Nevertheless, our experiments in Section 4 show
very low amounts of noise.

3. Although the test boards do have multiple DRAM modules,
DRAM refresh cannot be disabled individually. In particular, on the
Galileo board, one DRAM chip is used to store the most significant 8
bits of every 16 bits, while the other chip is used to store the least signif-
icant 8 bits. Disabling refresh on a single chip is not possible, as half of
each memory word would be lost.

SCHALLER ET AL.: DECAY-BASED DRAM PUFS IN COMMODITY DEVICES 465

refresh enabled for the non-PUF memory region. If access to
the PUF is no longer required, the balloon can be deflated
and the memory restored to normal use.

2.3 Security Assumptions

DRAMPUFs differ from classicmemory-based PUFs, as they
can be evaluated during run-time. An attacker, whowants to
evaluate the PUF needs to disable DRAM refresh. This task
requires writing to hardware registers, which can only be
performed by the kernel. An attacker thus requires root priv-
ileges. Furthermore, accessing the memory dedicated to the
PUF itself is restricted to the kernel as well. Thus, a crucial
security assumption is that firmware and operating system
are trusted and an attacker does not gain root privileges.

An attacker may try to change the ambient temperature
in order to influence the bit flip characteristics. Neverthe-
less, a legitimate user can compensate the temperature
effect by adjusting the decay time, as discussed in Section 4.
The attacker could also try to adapt the “rowhammering”
approach presented in [43], i.e., inducing random bit flips
into DRAM cells by repeatedly accessing adjacent rows.
However, the attacker would not succeed, as DRAM PUFs
allocate a continuous chunk of memory. Rowhammering
would only apply at the borders of the PUF area. At the
same time, the rowhammer effect can be leveraged to obtain
DRAM PUFs with higher entropy [44].

Although voltage variations can affect PUF behaviour, as
shown in [28], [38], changing the voltage supply of DRAM
on commodity hardware, without affecting the supply of
other components, such as the MCU, is not trivial, even
when it is possible. We therefore consider the effects of volt-
age variations to be out of scope. Invasive attacks are also
considered out of scope.

Finally, we consider aging as a factor that could affect the
stability of DRAM [29], [30], [45] and therefore could be used
in attacks. Here, we examine naturally occurring aging, and
not accelerated aging, as on commodity hardware it is not
trivial to manipulate aging effects only for the DRAM unit
and not for the other components of the test platform.

3 IMPLEMENTATION & PERFORMANCE

We implemented and tested our DRAM PUF construction
on two popular platforms, the PandaBoard ES Revision B3
and the Intel Galileo Gen 2. The PandaBoard houses a TI
OMAP 4460 System-on-Chip (SoC) module that implements
1 GB of DDR2 memory from ELPIDA in a Package-on-Pack-
age (PoP) configuration, which operates at 1.2 V. The Intel
Galileo is equipped with an Intel Quark SoC X1000 SoC and
two 128 MB DDR3 from Micron, operating at 1.5V. The two
physical DRAM modules are accessed in parallel and
located on the same PCB as the processor.

We implemented two different approaches to query the
PUF. The first approach uses a modified firmware in order
to obtain PUF measurements during the boot phase. Second,
we implemented a kernel module-based solution that ena-
bles PUF queries during run-time of a Linux operating sys-
tem. The firmware solution can be implemented in a
straight-forward fashion and was used to take most of the
measurements from the Intel Galileo. The kernel module-
based solution was used for obtaining measurements on
the PandaBoard platform and for gathering temperature

stability measurements on both platforms. The kernel mod-
ule thus also serves as a general proof-of-concept of the run-
time accessibility of the proposed DRAM PUF. We present
implementation details of both approaches in the following.

3.1 Firmware-Based PUF Access

The firmware is the first code to be executed upon device
start. During the DRAM initialization phase, the firmware
itself does not require the use of DRAM, as it is executed
from on-chip SRAM. This makes it ideal for accessing PUF.

In the case of the Galileo platform, we modified the
Quark EDKII firmware. Code that measures the PUF was
inserted just before DRAM refresh, comprising the follow-
ing steps: writing the initial value (iv) to the specific logical
PUF (as defined by addr and size), waiting for the decay
time t to elapse, and then reading back the PUF response
via the console. After the PUF response is retrieved, normal
firmware execution and eventual boot of the OS can resume.
The firmware patch consists of about 60 lines of C code. The
majority of the code implements initialization of the PUF
parameters and accessing the PUF memory region. The PUF
response is read and printed to the console for later analysis.

On the PandaBoard, the implementation is similar: the
DRAM region corresponding to the PUF is initialized, the
auto-refresh of the memory controller is disabled, and after
decay time t, the memory content is sent over UART to a
workstation. Our firmware patch for the PandaBoard con-
sists of about 50 lines of C code.

3.2 Linux Kernel Module-Based PUF Access

In order to be able to access the DRAM PUF during run-
time, we implemented a kernel module for each platform,
which can be inserted at run-time. The kernel module is
designed to work in three phases: (1) Upon loading, the ker-
nel module overwrites the contents of the DRAM cells in
the desired logical PUF region with iv. (2) The kernel mod-
ule then modifies the memory controller via writes to con-
figuration registers to disable DRAM refresh, while
memory locations occupied by the OS and applications are
selectively refreshed, as explained in Section 2.2. (3) After
the decay time of t seconds has elapsed, memory refresh is
enabled again and the PUF response is read out.

On the PandaBoard, DRAM can be accessed using two
individual external memory interfaces (EMIF), with each
EMIF covering 512 MB. In our implementation, memory
interfaced by the first EMIF can be used by the kernel and
user space applications, while memory covered by the sec-
ond EMIF can be used exclusively as DRAM PUF. In order to
implement this configuration, the interleaving mechanism of
the PandaBoard that alternately maps subsequent logical
addresses to physical addresses from bothmodulesmust first
be disabled within the bootloader. Next, measurements can
be obtained by turning off the refresh rate of the module that
implements the logical PUFs and reading the memory con-
tents after the decay time t, while the kernel and user space
applications remain functional on the other DRAM module.
The kernel module takes about 100 lines of C code in total.

On the Intel Galileo, refresh of the whole DRAM has to
be disabled as it is not possible to control refresh at a smaller
granularity than a DRAMmodule. Consequently, the kernel
module must selectively refresh memory used by the kernel

466 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 16, NO. 3, MAY/JUNE 2019

and applications. The kernel module schedules selective
refresh tasks4 every N ms, where N is the desired refresh
rate. For selective refresh, the module loops over all mem-
ory addresses that need to be refreshed, issuing a read to a
memory word in every DRAM row. The kernel module
takes about 300 lines of C code in total.

During a PUF query, the OS and other applications can
operate normally, but some CPU resources must be spent
on selective memory refresh. If the size of the memory
region is too large, the CPU will spend the majority of its
time refreshing the defined memory area, leaving little
resources to user space applications. Furthermore, if the
time required to refresh the whole memory region is longer
than the required refresh period, critical portions of code
and data may have decayed before they can be refreshed by
the kernel module, causing a system crash.

Table 1 shows the time required to perform selective
refresh of system memory regions of various sizes, ranging
from 32 MB up to 128 MB. We see that selective refresh
takes between 7.6 ms and 21.2 ms for a single run. The last
two columns in Table 1 show the CPU time spent on selec-
tive refresh, assuming 64 ms and 200 ms refresh rates.
For an active memory size of 128 MB, the system will spend
33 percent of CPU time on selective refresh when a target
refresh period of 64 ms is selected. However, at room tem-
perature, the 64 ms refresh period, picked by most vendors,
is very conservative, and our experiments suggest that even
with a refresh rate of 200 ms DRAM content remains stable.
Previous work on DRAM retention time supports our
results [46]. Thus, depending on the operating conditions
and required stability guarantees, the selective refresh
period can be increased, allowing larger DRAM to be
refreshed, or leaving more CPU resources for computation.
In our setup, we were able to reduce the memory footprint
of Yocto Linux, commonly used on Intel Quark devices,
down to 32 MB without any special modifications.5

At 32 MB, only 7.6 ms are needed for selective refresh every
64 ms, making more than 87 percent CPU time available
for other applications. These numbers demonstrate that
selective refresh is viable for realistic code sizes.

4 EVALUATION OF DECAY-BASED DRAM PUFS

Wemeasured DRAM PUF instances on the Intel Galileo and
PandaBoard, as described in Section 3. We performed

measurements using 4 different PandaBoards and 5 Intel
Galileo devices. Furthermore, given the large amount of
memory present, we measured two logical PUFs on each
device, resulting in eight different logical PUFs for the
PandaBoard as well as ten logical PUFs for the Intel Galileo.
Each logical PUF was measured at different decay times,
with 50 measurements each. We used two groups of con-
figurations. One group resembles the experimental setup
presented in [33] with decay times T 2 ¼ f120 s; 180 s; 240 s;
300 s; 360 sg and a smaller PUF size of 32 KB. The other
group uses new decay times T 1 ¼ f10 s; 20 s; 30 s; 40 s; 50 s;
60 sg, which are up to six times faster and further covers a
larger PUF size of 16 MB. Based on these measurements we
evaluated robustness, uniqueness, randomness, time and tem-
perature dependency, as well as stability of the DRAM PUFs.
In order to present a realistic scenario, we tested our devices
under conditions that naturally vary over time, in order to
resemble ambient properties during real-world usage.

The characteristics of the DRAM PUFs are different com-
pared to SRAM PUFs. Rather than being considered as an
array of bits, a DRAM PUF response consists of the posi-
tions of decayed cells in a memory region. Thus, the standard
metrics commonly used to evaluate memory-based PUFs
(usually fractional Hamming distances) are not suitable for
DRAM PUFs. This is particularly noticeable when evaluat-
ing uniqueness. In SRAM PUFs the fractional Hamming dis-
tance between the startup arrays of two different PUFs is
large, whereas for DRAM PUFs the distance is small, even if
PUFs are highly unique. This effect is caused by the fact that
the majority of DRAM cells does not decay within typical
timescales of PUF challenges.

We propose new robustness and uniqueness metrics that
ignore the ‘uninteresting’ majority of cells, i.e., those cells
that did not decay. We use these metrics to evaluate multi-
ple instances of DRAM decay-based PUFs as shown in
Table 2. Our metrics are based on the Jaccard index [47],
which is a well known metric to quantify the similarity
of two sets of different size. It results in a value of zero if
the sets share no common elements and a value of one if
the sets are identical. The Jaccard index of two sets A;B is
defined as

JðA;BÞ ¼def jA \ Bj
jA [Bj : (1)

Uniqueness. Consider two DRAM PUFs, PUFid1 and PUFid2 ,
which are given time t to decay. Let s1ðtÞ be the set of
addresses of the decayed cells in PUFid1 and similarly s2ðtÞ
for PUFid2 . The similarity between PUFid1 and PUFid2 is
expressed as

J1;2
interðtÞ ¼ Jðs1ðtÞ; s2ðtÞÞ: (2)

A small value of J1;2
inter indicates high uniqueness. Our

DRAM PUFs exhibit almost perfect behavior, with Jinter
values for decay times up to 60 s that do not exceed 0.001
for the Intel Galileo and 0.003 for the PandaBoard. At higher
decay times, up to 6 minutes, Intel Galileo exhibits a maxi-
mum of Jinter ¼ 0:007 at t ¼ 360 s. The PandaBoard shows
larger values with a maximum of 0.041 at t ¼ 300 s, which is
still close to the optimal value of zero. Those comparably
low values at shorter decay times are due to the fact that

TABLE 1
Time Needed to Perform Memory Reads, to Selectively

Refresh Varying Sizes of Memory Regions on the (Single-Core,
Single-Threaded) Intel Galileo Board with DDR3 Memory

system
memory

selective
refresh time

%CPU time
(64 ms refresh)

%CPU time
(200 ms refresh)

32 MB 7.6 ms 12% 4%
64 MB 12.1 ms 19% 6%
128 MB 21.2 ms 33% 10%

4. A key feature of Linux, the so-called workqueues, allowing tasks
to be scheduled at specific time intervals, is used for this purpose.

5. One required change is disabling or limiting the journaling
service. Other options available are to reduce the size of the journal, or
using persistent storage for the journal.

SCHALLER ET AL.: DECAY-BASED DRAM PUFS IN COMMODITY DEVICES 467

many fewer DRAM cells have had the chance to decay
within these short time periods (see Fig. 4). As given in
Table 2, the values for both configurations suggest that both
device types exhibit high uniqueness, with the Intel Galileo
showing inherently smaller Jinter values compared to the
values from the PandaBoard.

Robustness. Consider again the experiment where a
DRAM-PUF is given time t to decay. Let sðtÞ be the set of
addresses of decayed cells in one run of this experiment,
and s0ðtÞ in a subsequent run of the experiment on the same
PUFid. We characterize the robustness of the PUF as

JintraðtÞ ¼ JðsðtÞ; s0ðtÞÞ: (3)

Large values of Jintra indicate high robustness. Fig. 3 shows
the distributions of Jintra and Jinter for different decay times.
A wide gap between the two distributions indicates that
individual devices can be distinguished perfectly. Note that
at shorter decay times we observe minimum Jintra values of
0.385 for the Intel Galileo, whereas for the PandaBoard noise
values are smaller with the minimal Jintra value 0.687 at
t ¼ 10 s (see Table 2). The differences in the Jintra values
among the two groups of configurations reflect variations of
ambient conditions (i.e., temperature) over time. Neverthe-
less, we note that in both cases, the Jintra values are high
enough to allow the devices to be used successfully. We can
therefore conclude that our devices constitute robust PUF

behavior in a realistic usage scenario, where ambient condi-
tions, such as temperature, are expected to naturally differ.

Entropy. If we want to generate cryptographic keys from
the PUF responses, the PUFs must exhibit sufficient
entropy. We estimate the entropy of DRAM PUFs in the fol-
lowing manner. We again consider the observed set sðtÞ of
indices of DRAM cells that have decayed by time t. The car-
dinality of sðtÞ is denoted as lt ¼ jsðtÞj, and N is the total
number of DRAM cells. We assume that each DRAM cell
independently has a probability pðtÞ of having a decay time
smaller than t (such that it usually decays in time less
than t). We estimate pðtÞ as lt=N . The PUF entropy associ-
ated with time t is given by

Ht ¼ NhðpðtÞÞ � Nhðlt=NÞ; (4)

where hðpÞ ¼ p log 1
p þ ð1� pÞlog 1

1�p is the binary entropy

function. A single observation of sðtÞ may not be sufficient

for determining pðtÞ because of short-term noise. Thus, we

are estimating pðtÞ by averaging 50 observations of lt, i.e., we

are computing multiple measurements. Table 2 lists the

entropyHt as bits per measured logical PUF (i.e., 16 MB and

32 KB). We observe that the entropy is significantly higher

on the PandaBoard, correlating with the higher number of
bit flips of this device type. This is most likely due to the

different technologies used to implement DRAM cells.

In particular, the results show that the minimum entropy of

TABLE 2
Metrics for Logical PUF Instances Measured at Different Decay Times T 1 and T 2 as Well as for Different PUF Sizes

T 1 ¼ f10 s; 20 s; 30 s; 40 s; 50 s; 60 sg, size ¼ 16MB T 2 ¼ f120 s; 180 s; 240 s; 300 s; 360 sg, size ¼ 32 KB

decay
times T 1

device
type

min.
Jintra

max.
Jinter

Ht

(bits)
avg. number
decayed cells

decay
times T 2

device
type

min.
Jintra

max.
Jinter

Ht

(bits)
avg. number
decayed cells

10 s
PandaBoard 6:870� 10�1 0.000 7:062� 103 5:250� 102

120 s
PandaBoard 4:630 � 10�1 1:000� 10�2 1:362� 104 1:069� 103

IntelGalileo 3:850� 10�1 0.000 3:810� 102 2:300� 101 IntelGalileo 7:710 � 10�1 4:000� 10�3 3:382� 103 2:450� 102

20 s
PandaBoard 7:120� 10�1 3:000� 10�4 6:741� 104 6:132� 103

180 s
PandaBoard 4:380 � 10�1 1:700� 10�2 3:163� 104 2:675� 103

IntelGalileo 4:750� 10�1 0.000 3:837� 103 2:720� 102 IntelGalileo 8:360 � 10�1 4:000� 10�3 8:482� 103 6:400� 102

30 s
PandaBoard 7:260� 10�1 1:000� 10�3 2:294� 105 2:380� 104

240 s
PandaBoard 4:090 � 10�1 2:600� 10�2 4:736� 104 4:161� 103

IntelGalileo 4:650� 10�1 1:000� 10�3 1:508� 104 1:194� 103 IntelGalileo 6:260 � 10�1 5:000� 10�3 1:381� 104 1:085� 103

40 s
PandaBoard 7:380� 10�1 1:000� 10�3 5:099� 105 5:835� 104

300 s
PandaBoard 4:220 � 10�1 4:100� 10�2 5:911� 104 5:307� 103

IntelGalileo 5:140� 10�1 4:000� 10�4 4:266� 104 3:711� 103 IntelGalileo 7:940 � 10�1 6:000� 10�3 1:960� 104 1:588� 103

50 s
PandaBoard 7:620� 10�1 2:000� 10�3 8:973� 105 1:108� 105

360 s
PandaBoard 3:480 � 10�1 3:400� 10�2 6:738� 104 6:129� 103

IntelGalileo 5:500� 10�1 2:000� 10�4 8:658� 104 8:078� 103 IntelGalileo 8:280 � 10�1 7:000� 10�3 2:912� 104 2:444� 103

60 s
PandaBoard 7:690� 10�1 3:000� 10�3 1:374� 106 1:805� 105

IntelGalileo 5:880� 10�1 4:000� 10�4 1:478� 105 1:459� 104

Left: results for decay times T 1 ¼ f10 s; 20 s; 30 s; 40 s; 50 s; 60 sg and size ¼ 16 MB. Right: results for decay times T 2 ¼ f120 s; 180 s; 240 s; 300 s; 360 sg
and size ¼ 32 KB.

Fig. 3. Histograms of Jintra and Jinter values for multiple instances of the PandaBoard and the Intel Galileo, (left two graphs) for decay times
T 1 ¼ f10 s; 20 s; 30 s; 40 s; 50 s; 60 sg and size ¼ 16MBand (right two graphs) for decay times T 2 ¼ f120 s; 180 s; 240 s; 300 s; 360 sg and size ¼ 32MB.

468 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 16, NO. 3, MAY/JUNE 2019

the PandaBoard can be up to one order of magnitude larger

compared to the Intel Galileo, i.e., at t ¼ 240 s the PandaBoard

provides 25949 bits per 32 KB of DRAM, versus 9692 bits for

the Intel Galileo. At larger tmore DRAM cells get a chance to
decay, increasing lt and hence the entropy. However, large

values of tmake PUF handling too slow to be practical.
Regarding the fractional entropy, the values of the pro-

posed DRAM PUF are orders of magnitude smaller, com-
pared to SRAM PUFs, which usually have 0:7 to 0:9 bits of
entropy per cell. However, DRAM is usually orders of mag-
nitude larger than SRAM, and can provide enough entropy
in total.

Decay Dependency on Time and Temperature. Fig. 4 shows
the average proportion of decayed cells, lt=N , as a function
of time t. All measurements were taken at (ambient) room
temperature with DRAM chips operating at around 40 	C.
Every point in the plot represents an average taken over
all logical PUFs. We see that the number of decayed cells
significantly increases with time.

This plot allows us to estimate the number of time-depen-
dent challenges that a logical PUF can support. In order to
allow for unique identification at different decay times, the
set of decay times T ¼ f t1; t2; . . . ; tng must be chosen such
that the corresponding measurements taken at decay time
txþ1 show aminimumnumber of new bit flips �tx ¼ ltxþ1

� ltx ,
with respect to the previous one tx, which must be greater
than the inherent noise. Given the noise values and �t, the set
of viable decay times and thus the challenges of a logical
PUF can be determined accordingly. We computed a conser-
vative, minimum number of possible challenges per logical
PUF, by using the maximum noise (i.e., minimum Jintra
value) and the minimum number of bit flips, previously
observed at each decay time t. We experimentally deter-
mined the maximum number of challenges for decay times
T 1 and PUF size ¼ 16 MB to be n ¼ 5 for the Intel Galileo
and n ¼ 6 for the PandaBoard, as well as n ¼ 7 and n ¼ 2,
respectively for T 2 and PUF size ¼ 32 KB. Possible chal-
lenge times are indicated by vertical red lines in Fig. 4.

A second factor influencing the number of decayed
DRAM cells is temperature. Fig. 5 shows the proportion of
decayed cells as a function of temperature. Temperatures
lower than room temperature were achieved using a thermal
chamber. All other temperatures were stablized using a
ceramic heater circuit. We observed that heating (or cooling)
theDRAMaffects all cells in the sameway: the decay is accel-
erated (or slowed down) by the same factor. For example, at
temperature T 0 > T it is possible to find a decay time t0 < t
such that sðt0ÞT 0 ¼ sðtÞT , i.e., from a heated DRAM, operating
at temperature T 0, a similar response can be obtained in time
t0 as from a cooler DRAM in time t. The adapted decay time t0

at an increased temperature T 0 that results in a similar decay
behavior as using decay time t at temperature T (with
T 0 > T), can be computed as

t0T 0 ¼ t
 e�aðT 0�T Þ: (5)

Based on our measurements, we estimated a to be 0.068 for
the Intel Galileo platform and 0.066 for the PandaBoard.

Fig. 6 shows the Jaccard index Jintra between measure-
ments sðtÞT at (ambient) room temperature with DRAMoper-
ating at T ¼ 40 	C for t ¼ f120 s; 180 s; 240 s; 300 s; 360 sg and
measurements sðt0ÞT 0 performed on the same DRAM PUF, at
temperatures T 0 ¼ f10	C, 20	C, 30	C, 40	C, 50	C, 60	C, 70	C,
80	Cg for adjusted t0 ¼ ft1; t2; t3; t4; t5g. For T 0 ¼ 40 	C, t0 ¼ t,
whereas a distinct set t0 of adjusted time points exists for each

Fig. 5. Proportion of decayed DRAM cells as a function of temperature for
multiple instances of the PandaBoard and the Intel Galileo, (top) for decay
timesT 1 ¼ f10 s; 20 s; 30 s; 40 s; 50 s; 60 sg and size ¼ 16MBand (bottom)
for decay times T 2 ¼ f120 s; 180 s; 240 s; 300 s; 360 sg and size ¼ 32KB.

Fig. 4. Proportion of decayed DRAM cells as a function of time for multiple instances of the PandaBoard and the Intel Galileo, (left two graphs) for
decay times T 1 ¼ f10 s; 20 s; 30 s; 40 s; 50 s; 60 sg and size ¼ 16MB and (right two graphs) for decay times T 2 ¼ f120 s; 180 s; 240 s; 300 s; 360 sg and
size ¼ 32 KB. Possible challenge times are indicated by vertical lines.

SCHALLER ET AL.: DECAY-BASED DRAM PUFS IN COMMODITY DEVICES 469

different temperature of the set T 0, such that sðt0ÞT 0 ¼ sðtÞ40	C.
Jintra remains higher than 0.65, indicating reconstruction at
different temperature is feasible. Especially, when the recon-
struction temperature is close to the enrollment temperature,
the noise is small. This confirms that differences in tempera-
ture can effectively be accommodated by adjusting t and that
the PUF behavior at different temperatures can be predicted.

Stability Over Time. During extended lifetime of devices,
DRAM aging effects will begin to take place. Existing work
on SRAM PUFs has explored aging effects [24], [25], [48],
[49]. We are only aware of limited work on aging-related
effects in DRAM cells with regard to security [50]. Fig. 7
shows the histogram of Jintra values for measurements of
both evaluation boards, taken roughly 16 months apart.
Note that the measurements also include the noise intro-
duced by temperature changes in our lab. The values for the
Intel Galileo and the PandaBoard are similar to the Jintra
results shown in Table 2, suggesting sufficient stability of
DRAM PUFs over a long-term usage time period.

5 A HELPER DATA SYSTEM FOR DRAM PUFS

5.1 Helper Data System Construction

In order to use a PUF for key storage a Helper Data System,
also known as Fuzzy Extractor [51], [52], [53], [54], is
required. The HDS takes care of the noise in the PUF meas-
urements and ensures that a cryptographic key can repro-
ducibly be generated from the PUF. An HDS consists of an
enrollment algorithm Enroll and a reconstruction algo-
rithm Rec. The algorithm Enroll probes the PUF and out-
puts a secret key K and helper data w. The helper data is
stored in nonvolatile memory. It must be assumed that an
adversary has access to w as it is stored publicly on the
device. Therefore, the Enroll algorithm is crafted such
that w does not leak information about K. At reconstruction

time, algorithm Rec does a fresh measurement of the PUF,
reads w and computes a best guess K̂ for the key from those
two inputs. If the HDS is properly designed and the noise
was below a certain threshold, then K̂ ¼ K.

We construct an HDS that is similar to HDSs for SRAM
PUFs [55]. The main difference is that the decay behavior of
DRAM cells is an analog property, while SRAM startup
states are discrete. We discretise the decay properties by
giving DRAM cells a label ‘F’ (fast) or ‘S’ (slow) or no label.
The F cells lose their charge quickly, the S cells slowly, and
form sets F and S respectively. Our Enroll algorithm cre-
ates two layers of helper data: (i) pointers to memory cells
which (during enrollment) were either extremely fast or
extremely slow; (ii) helper data for the Code Offset Method
(COM) [52], [53], [56], [57], [58]. The first layer improves
noise resilience by selecting only those cells that are unlikely
to change their decay speed significantly when environmen-
tal conditions change. Using pointers which identify a simi-
lar number of stable F and S cells also avoids the problem
of high bias, as there are many more S cells than F cells in a
DRAM module. In particular, the Code Offset Method, one
of the simplest and most popular Helper Data Systems,
becomes ineffective when its input has a large bias towards
either 0 or 1, as shown in [59], [60]. In the case of large bias,
PUF measurements exhibit decreased entropy, and in turn
the COM’s helper data w leaks information about the key K.
In contrast, our use of pointers was introduced in [60] and is
similar to ‘Index Based Syndromes’ [61], which avoids leak-
age problems due to bias. The details of the HDS follow.

5.2 System Setup

We present our enrollment algorithm in Algorithm 1 and
our reconstruction algorithm in Algorithm 2. A linear error
correcting code is chosen that encodes k-bit messages in
n-bit codewords. The syndrome function of the code is
Syn : f0; 1gn ! f0; 1gn�k. Syndrome decoding is denoted
as SynDec : f0; 1gn�k ! f0; 1gn. A key derivation function
KeyDeriv : f0; 1gn � f0; 1g�! f0; 1g‘ is chosen, which takes
as input an n-bit secret string and public randomness, and
outputs an ‘-bit secret key. System parameters nf and ns,
with ns þ nf ¼ n, and parameters N , t1, t2, t3 are fixed.
The parameters t1, t2 and t3 are decay times, chosen such
that t1 � t3. In particular, values N , t1, t3 are chosen such
that the enrollment can be performed in a limited amount of
time Nt1 þ t3 while still accurately labeling cells as F and S

cells. Time t2 is chosen such that (a) reconstruction is suffi-
ciently fast and (b) noise is small: a fast cell has had more
time to discharge than at the enrollment timescale t1, and a
slow cell has had less time to discharge than at enrollment

Fig. 6. Jintra values (i.e., similarity) of enrollment measurements taken
at T ¼ 40 	C and reconstruction measurements at temperatures T 0 ¼
f10 	C, 20 	C, 30 	C, 40 	C, 50 	C, 60 	C, 70 	C, 80 	Cg, with adjusted
decay times t0 for multiple instances of the PandaBoard (top) and the
Intel Galileo (bottom).

Fig. 7. Distribution of Jintra values computed between measurements
pairs, taken at enrollment and reconstruction from the same logical PUF
instances, over � 16 months apart. Values are shown for the Panda-
Board left and Intel Galileo right.

470 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 16, NO. 3, MAY/JUNE 2019

timescale t3. In Section 5.3 we provide values for the param-
eters, based on the decay characteristics of our evaluation
platforms. The parameter ‘ is set such that any information
about x that the adversary may have (due to bias or non-
uniform distributions of F and S cells, correlations between
memory cells, etc.) is squeezed out by KeyDeriv’s compres-
sion and does not end up in K. The KeyDeriv algorithm can,
for example, be a universal hash function [62], [63] or a
q-wise independent hash function [64].

Algorithm 1. Enroll

1 For i 2 f1; . . . ; Ng do the following experiment:
Charge the DRAM. Let it decay for time t1. Let F i be the
set of addresses of the decayed cells;

2 F ¼ F 1 \

 \ FN ;
3 Charge the DRAM. Let it decay for time t3;
4 Let S be the set of addresses of the cells that have not

yet decayed;
5 Randomly pick nf elements from F and ns elements from S,

with nf þ ns ¼ n. Construct a vector r by putting the n
elements in a random order.
Construct x 2 f0; 1gn such that xi ¼ 1 if ri 2 F and xi ¼ 0
if ri 2 S;

6 w ¼ Syn ðxÞ;
7 Generate random p. Compute K ¼ KeyDerivðx; pÞ;
8 Store ðr; w; pÞ in memory.

In the reconstruction procedure, the device may perform
a temperature measurement and then adjust t2 to the tem-
perature using a formula similar to Equation (5).

There are well known methods by which Rec can verify
if the reconstructed key is correct and if the stored data has
been manipulated [54]. They are omitted here for the sake
of brevity. In step 1 of Algorithm 2 we write ðr0; w0; p0Þ
because the stored data may have been manipulated.

Step 4 of Algorithm 2 uses the linearity of the error correct-
ing code. The expression w0 � Syn ðx0Þ equals Synðx� x0Þ,
i.e., the syndrome of the error vector. The SynDec outputs the
error vector, which is then xor’ed into x0 to reconstruct x.

Algorithm 2. Rec

1 Read ðr0; w0; p0Þ;
2 Charge the DRAM. Let it decay for time t2;
3 Construct x0 2 f0; 1gn such that x0

i ¼ 1 if the cell at address
r0i is decayed and 0 otherwise;

4 x̂ ¼ x0 � SynDecðw0 � Syn ðx0ÞÞ;
5 K̂ ¼ KeyDerivðx̂; p0Þ.

5.3 Experimental Validation of the HDS

To find realistic reference values for the parameters of the
HDS, we validated the proposed Helper Data System for its
practicability, based on the device types which we used in
Section 4. The parameter t2 should be chosen such that only
with small probability F cells will not decay at t2 and simi-
larly, that the decay of S cells at t2 is unlikely. In order to
estimate the noise, we evaluated fractional bit error rates
(BER): BER1 for F cells observed at t1 and BER2 for S cells
observed at t3, respectively. The maximum of BER1 and
BER2 indicates the noise in the reconstruction. While both
bit error rates can take values ranging from zero to one,

preferable BERs are close to zero. BER1 indicates the pro-
portion of F cells, which only decayed at t1 but not at t2, nor-
malized by the total amount of cells, which decayed until t1

BER1 ¼
jsðt1Þ n sðt2Þj

lt1
: (6)

In contrast, BER2 gives the proportion of S cells, which
decayed at t2 but did not decay at enrollment decay time t3,
normalized by the number of all the cells that comprise
a measurement, except those ones flipped at t3. BER2 is
computed as

BER2 ¼
jsðt2Þ n sðt3Þj

N � lt3
: (7)

In the rest of this section, we evaluate a more efficient
enrollment procedure, which requires only one enrollment
measurement, by setting t1 ¼ t3 ¼ 20 s and N ¼ 1 to esti-
mate bit error rates. In particular, we compared enrollment
measurement me taken at t1 ¼ t3 ¼ 20 s with various recon-
struction measurements mr obtained at decay times
t2 ¼ f30 s; 40 s; 50 s; 60 sg. We obtained values for BER1 and
BER2 between ðme;mrÞ pairs. Both bit error rates, computed
for different t2 decay times and for both evaluation plat-
forms, are given in Fig. 8. The very small number of frac-
tional bit errors, with a maximum of 0.8 percent for the
PandaBoard and 2.9 percent for the Intel Galileo, support
the computation of helper data as described in Section 5.1.

Fig. 8. Fractional bit error rates BER1 and BER2 (in %) computed
between subsequent decay times for PandaBoard (top) and Galileo
(bottom).

SCHALLER ET AL.: DECAY-BASED DRAM PUFS IN COMMODITY DEVICES 471

The observed numbers of bit flips for a 16 MB memory
region at different decay times, in combination with the low
bit error rates presented above, allow for using only a single
enrollment measurement, i.e., setting t1 ¼ t3. In particular,
we observed several orders of magnitude more S cells than F

cells, up to decay time t3. Moreover, the small error rates
shown in Fig. 8 suggest that only a small percentage of cells
in N n F decay faster than expected (with N being the set of
all DRAM cells), which allows us to label the fast cells with a
single enrollment and safely assume that all the other cells
are slow. For example, if a 128 bit keywas to be reconstructed,
based on the evaluation results, we can set t1 ¼ t3 ¼ 20 s on
the Intel Galileo, resulting in an average of 272 F cells, with a
worst-case bit error of 3 percent. On the PandaBoard, we can
set t1 ¼ t3 ¼ 10 s, which leads to an average of 525 F cells and
amaximumbit error rate of 2 percent.6

In order to robustly derive a cryptographic key on the
basis of the error rates given in Fig. 8, we employ a linear
error-correcting code, such as a ðn; k; tÞ BCH code. For exam-
ple, considering a maximum error rate of 3 percent and a
message length of m ¼ 128 bit (i.e., a typical AES key), a
ð31; 26; 1Þ BCH code, which operates on 5 concatenated
blocks, requires 155 flipped DRAM bits as input. For all the
16 MB PUF regions we measured, enough bit flips appear in
the enrollment with decay time t1 ¼ 20 s on Intel Galileo and
t1 ¼ 10 s on PandaBoard. After the enrollment measurement,
the PUF size can be adjusted to have just enough bit flips,
thus allowing for multiple PUF instances within one DRAM.
As an example, given the average number of decayed
cells of the Intel Galileo at decay time t1 ¼ 20 s and PUF
size ¼ 16 MB, listed in Table 2, one requires only � 9 MB to
store a 128 bit key. In contrast, the PandaBoard requires
� 4:7 MB when using an enrollment decay time of t1 ¼ 10 s.
As the number of bit flips varies across different DRAMs in a
product line, to enroll DRAMs in a product line, the number
of bit flips versus decay time should be measured on a few
samples, and the enrollment decay time should then be
chosen accordingly, such as 20 s for Galileo. Then the PUF
size can be further chosen after the enrollments are done, to
ensure there are enought bit flips.

The described HDS introduces a novel solution regarding
error correction for the DRAM decay PUF examined in [33].
It is considerably compact, as the helper data employed
requires only minimal memory space. Additionally, it is
very simple to implement and can work for a biased PUF,
as proven by our experimental validation.

6 A LIGHTWEIGHT AUTHENTICATION PROTOCOL

If a device supports the computation of helper data, as
described in Section 5, it can immediately provide stable
PUF keys for use in any symmetric or asymmetric crypto-
graphic protocol. In this section we consider the case of a
highly resource-constrained device which does have DRAM,
but not the processing power to run the key reconstruction
phase of the Helper Data System. Especially the SynDec func-
tion can be computation-intensive.

In this lightweight scenario, the PUF device is also
unable to perform any cryptographic operation. If we want
to construct an authentication scheme based on PUF
responses, then the parties will inevitably have to transmit
information about PUF responses in plaintext. This makes
all lightweight protocols susceptible to Man-In-The-Middle
(MITM) attacks. Nevertheless it makes sense to implement
lightweight authentication, as it presents a cost-effective
hurdle against ‘casual’ attacks.

We present a lightweight PUF-based mutual authentica-
tion protocol for this scenario in Algorithm 3. The protocol
is based on the mutual comparison of sets sx which contain
indices of decayed cells at increasing time scales tx. One
party reveals the set sx, randomly contaminated with indi-
ces pointing to undecayed cells. The other party demon-
strates its ability to identify which indices belong to sx.

Requirements. A prover device P needs access to some
resource offered by a verifier V, and has to prove that it pos-
sesses a specific logical PUF (PUFidÞ. Furthermore, P trusts
the resource only if V too knows the responses of PUFid.

Consider an active attacker whose aim is to obtain PUF
responses by pretending to be one of the parties. We want
to build our scheme in the following way. If the attacker
impersonates the PUF device P, the protocol should force
him to be the first party to provide information about the
PUF response. Thus the attacker does not easily get access
to the resources that V is protecting; i.e., the attacker first
needs to learn PUF responses. If on the other hand the
attacker impersonates V, it should not be easy for him to
quickly extract all the PUF responses from P. In order to sat-
isfy this requirement, we make sure that the initiative to
start the protocol lies with P. In this way the attacker has to
wait until P initiates contact.

Attacker Model. We consider an adversary who is able to
observe the communication between P and V, and also to
engage in a protocol exchange with either P or V. We do not
consider man-in-the-middle attacks or message modifica-
tion. The protocol is publicly known, including all the sys-
tem parameters.

System Setup. A vector T ¼ ft0; t1; . . . ; tng of decay times
(with t0 < t1 <

 < tn) is carefully chosen such that
8x ltxþ1

� ltx ¼ �tx , i.e., at every time step the number of newly
decayed cells always equals the security parameter �t.

The set of enrollment times T enroll ¼ fte0; te1; . . . ; teng is cho-
sen to evaluate the BER and set system parameters
D1 and D2. Here, BER1 and BER2 are calculated according
to Equations (6) and (7) by setting t2 ¼ tei and t1 ¼ t3 ¼ ti.
Furthermore, thresholds are set as D1 ¼ BER1, D2 ¼
maxðBER1;BER2Þ. For example, for ti ¼ 20 s, if tei ¼ 30 s,
BER1 ¼ 1% for PandaBoard and 3 percent for Intel Galileo;
if tei ¼ 20 s, BER1 ¼ 6% for PandaBoard and 53 percent for
Intel Galileo.

Enrollment. Enrollment is conducted by a trusted party
SYS, such as a manufacturer or a system integrator. SYS
queries the PUF at decay times T enroll and gets a set of meas-
urements for each PUFid: Mid ¼ fside ðt0Þ; side ðt1Þ; . . . ; side ðtnÞg.
The sets Mid are distributed over multiple verifiers,
considering that different verifiers must not share the
same id. For each PUFid the prover device initializes the
counter cid to zero, and the verifier initializes the counter c0id
to zero.

6. Note that these values are only valid for the average case, using
the evaluated device types. Using other device types may lead to differ-
ent minimum number of bit flips that must be taken care of when set-
ting values for the parameters of the HDS.

472 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 16, NO. 3, MAY/JUNE 2019

Algorithm 3. Mutual Authentication LetN id

Denote the Set of all Memory Cells in PUFid.

1 P initiates contact;
2 V sends id to P;
3 P performs the following actions:

Set x ¼ cid. Perform a measurement of PUFid at decay time
tx. The result is a set of addresses s

idðtxÞ of decayed cells.
Randomly select addresses into a set B N id n sidðtxÞ of
size jBj ¼ 2�tðxþ 1Þ � lidx and construct a vector z by
randomly permuting sidðtxÞ [B. Construct a bit string
a 2 f0; 1g2�tðxþ1Þ such that ai ¼ 1 if zi 2 sidðtxÞ and ai ¼ 0
otherwise. Increase cid and send x, z to V;

4 V performs the following actions:
Continue only if x � c0id and z has length 2�tðxþ 1Þ; else
abort. Construct a0 2 f0; 1g2�tðxþ1Þ such that a0i ¼ 1 if
zi 2 side ðtxÞ. If the fractional Hamming weight of a0 is
larger than 1

2 ð1� D1Þ, then set c0id ¼ xþ 1 and send a0,
else abort;

5 P checks if the fractional Hamming distance between
a and a0 is smaller than D2. If not, P aborts.

Mutual Authentication. After P and V establish contact in
the first two steps of Algorithm 3, the prover constructs the
address vector z from the addresses (sidðtxÞ) of decayed cells
and a random set (B) of addresses that have not yet
decayed. Given that P has knowledge about the tempera-
ture behavior of his DRAM-PUF, he can use a temperature-
scaled decay time t0 (see Equation (5)) in order to retrieve z.
The random permutation ensures that attackers cannot
derive sidðtxÞ from z. The selection of the random set B
ensures that the protocol is not hindered by the potentially
large number of erroneous bit flips, even if the probability
of such an error is small per cell (see Section 5.3), the huge
number of cells in a logical PUF may drive up the number
of bit errors. Note that P adjusts the size of B so that z has
size 2�tðxþ 1Þ.

Due to the tuning of the string length, the string a is bal-
anced, i.e., it contains approximately as many ‘0’s as ‘1’s,
ensuring large entropy of a given z. Letting multiple instan-
ces of the protocol run, we assume the attacker to know the
locations of flipped bits at previous decay times. In particular,
an eavesdropper Eve knows lidx�1 � �t
 x addresses that also

appear in sidðtxÞ. Hence, the number of addresses unknown
to Eve is � �t. The entropy of a given z is then the entropy of

�t positions out of ðxþ 1Þ2�t � x�t, i.e., log
ðxþ2Þ�t

�t

� �
, which can

be approximated as �tðxþ 2Þhð 1
xþ2Þ � �t.

Note that P keeps track of cid, otherwise an attacker
could impersonate a verifier and learn the complete mem-
ory state for each id; tx by communicating with P many
times. Furthermore, V also has to keep track of c0id, otherwise
an attacker could replay a z from the past. The check if
x � c0id is meant to detect replays. In step 4 of Algorithm 3,
the verifier performs a check on the Hamming weight of a0.
This verifies if P is authentic. If z is sent by an impostor
then with very high probability z will not contain �tð1� D1Þ
addresses that are also in the enrollment side ðtxÞ. In step 5, P
checks the Hamming distance between a and a0, concluding
the mutual authentication protocol.

The prover device uses every pair ðid; xÞ only once. As
soon as P sends a string z, it increases its counter cid. This is
independent of the a versus a0 verification at the verifier
side. Note that an attacker can pretend to be P and make
many attempts to authenticate to V without affecting c0id.

Moreover, there is a straightforward denial of service
attack. The attacker can repeatedly pretend to be a verifier
and abort at step 4 of the protocol. With each aborted run, P
is forced to increase the counter x. At some point PUFid is
exhausted. However, as P is the party that initiates the pro-
tocol, the attacker cannot set the pace of his denial of service
attack. Furthermore, P can be programmed to (temporarily)
stop communicating if it observes consecutive failures.
A sequence diagram of the protocol is depicted in Fig. 9.

7 CONCLUSION

In this work we presented intrinsic PUFs that can be
extracted from Dynamic Random-Access Memory in com-
modity devices. An evaluation of the DRAM PUFs found
on unmodified, commodity devices, in particular the Pan-
daBoard and Intel Galileo, showed their robustness, unique-
ness, randomness, and stability over period of several
months. Moreover, in contrast to existing DRAM and
SRAM PUFs, decay-based DRAM PUFs can be queried
directly during run-time. We further presented an HDS
scheme tailored towards DRAM PUFs as well as a light-
weight protocol for device authentication that draws its
security from time-dependent decay characteristics of our
DRAM PUF. Our intrinsic DRAM PUFs overcome two limi-
tations of the popular intrinsic SRAM PUFs: they have
the ability to be accessed at run-time, and have an expanded
challenge-response space due to the use of a decay time t
that is part of the challenge. Consequently, our work
presents a new alternative for device authentication by
leveraging DRAM in commodity devices.

ACKNOWLEDGMENTS

This work has been partly funded by DFG as part of project
P3 within the CRC 1119 CROSSING, and also by the Ger-
man Academic Exchange Service (Deutscher Akademischer
Austauschdienst - DAAD). This work was also supported
in part by the US National Science Foundation (NSF) under
NSF Grant no. 1651945. A. Schaller and W. Xiong contrib-
uted equally to this work.

Fig. 9. The lightweight mutual authentication protocol.

SCHALLER ET AL.: DECAY-BASED DRAM PUFS IN COMMODITY DEVICES 473

REFERENCES

[1] G. Hernandez, O. Arias, D. Buentello, and Y. Jin, “Smart nest ther-
mostat: A smart spy in your home,” Black Hat USA, 2014. [Online].
Available: http://blackhat.com/docs/us-14/materials/us-14-Jin-
Smart-Nest-Thermostat-A-Smart-Spy-In-Your-Home-WP.pdf,
Accessed on: Mar. 10, 2018.

[2] P. Venda, Pen Test Partners LLP, “Hacking DefCon 23’s IoT Village
Samsung fridge.” Aug. 18, 2015. [Online]. Available: https://www.
pentestpartners.com/blog/hacking-defcon-23s-iot-village-
samsung-fridge, Accessed on: Jul. 8, 2016.

[3] A. Greenberg, “Hackers remotely kill a jeep on the highway—
with me in it,” Wired (online). Jul. 21, 2015 [Online]. Available:
https://www.wired.com/2015/07/hackers-remotely-kill-jeep-
highway/, Accessed on: Jul. 8, 2016.

[4] I. Foster, A. Prudhomme, K. Koscher, and S. Savage, “Fast and
vulnerable: A story of telematic failures,” in Proc. USENIX Work-
shop Offensive Technol., 2015, pp. 15–15.

[5] B. Schneier, “The internet of things is wildly insecure—and often
unpatchable,” Wired (online). Jan. 6, 2014 [Online]. Available:
http://www.wired.com/2014/01/theres-no-good-way-to-patch-
the-internet-o f-things-and-thats-a-huge-problem/, Accessed on:
Jul. 8, 2016.

[6] J. Viega and H. Thompson, “The state of embedded-device secu-
rity (Spoiler alert: It’s bad),” IEEE Secur. Privacy, vol. 10, no. 5,
pp. 68–70, Sep./Oct. 2012.

[7] F. Armknecht, R. Maes, A.-R. Sadeghi, B. Sunar, and P. Tuyls,
“Memory leakage-resilient encryption based on physically
unclonable functions,” in Towards Hardware-Intrinsic Security.
Berlin, Germany: Springer, 2010, pp. 135–164.

[8] G. E. Suh and S. Devadas, “Physical unclonable functions for
device authentication and secret key generation,” in Proc. Des.
Autom. Conf., 2007, pp. 9–14.

[9] €U. Kocabaş, A. Peter, S. Katzenbeisser, and A.-R. Sadeghi,
“Converse PUF-Based Authentication,” in Int. Conf. Trust and Trust-
worthy Computing, Berlin, Germany: Springer, pp. 142–158, 2012.

[10] P. Tuyls and L. Batina, “RFID-tags for anti-counterfeiting,” in
Topics in Cryptology. Berlin, Germany: Springer, 2006, pp. 115–131.

[11] J. Guajardo, S. S. Kumar, G.-J. Schrijen, and P. Tuyls, “FPGA
intrinsic PUFs and their use for IP protection,” in Cryptographic
Hardware and Embedded Systems, Berlin, Germany: Springer,
pp. 63–80, 2007.

[12] J. Guajardo, S. S. Kumar, G. J. Schrijen, and P. Tuyls, “Brand and
IP protection with physical unclonable functions,” in Proc. IEEE
Int. Symp. Circuits Syst., 2008, pp. 3186–3189.

[13] A. Schaller, T. Arul, V. van der Leest, and S. Katzenbeisser,
“Lightweight anti-counterfeiting solution for low-end commodity
hardware using inherent PUFs,” in Int. Conf. Trust and Trustworthy
Computing, Berlin, Germany: Springer, 2014, pp. 83–100.

[14] F. Kohnh€auser, A. Schaller, and S. Katzenbeisser, “PUF-based
software protection for low-end embedded devices,” in Int. Conf.
Trust and Trustworthy Computing, Berlin, Germany: Springer, 2015,
pp. 3–21.

[15] R. A. Scheel and A. Tyagi, “Characterizing composite user-device
touchscreen physical unclonable functions (PUFs) for mobile
device authentication,” in Proc. Int. Workshop Trustworthy Embed-
ded Devices, 2015, pp. 3–13.

[16] J. Kong, F. Koushanfar, P. K. Pendyala, A.-R. Sadeghi, and
C. Wachsmann, “PUFatt: Embedded platform attestation based
on novel processor-based PUFs,” in Proc. ACM/EDAC/IEEE Des.
Autom. Conf., 2014, pp. 1–6.

[17] S. Schulz, A.-R. Sadeghi, and C. Wachsmann, “Short paper: Light-
weight remote attestation using physical functions,” in Proc. ACM
Conf. Wireless Netw. Secur., 2011, pp. 109–114.

[18] P. Tuyls and B. �Skori�c, “Secret key generation from classical phys-
ics: Physical uncloneable functions,” in AmIware Hardware Technol-
ogy Drivers of Ambient Intelligence. Berlin, Germany: Springer, 2006,
pp. 421–447.

[19] B. �Skori�c, G.-J. Schrijen, P. Tuyls, T. Ignatenko, and F. Willems,
Secure key storage with PUFs, pp. 269–292, 2007.

[20] B. Gassend, D. Clarke, M. Van Dijk, and S. Devadas, “Delay-based
circuit authentication and applications,” in Proc. ACM Symp. Appl.
Comput., 2003, pp. 294–301.

[21] Intrinsic ID B.V., “Intrinsic-ID to showcase TrustedSensor IoT
security solution at InvenSense Developers Conference,”
[Online]. Available: https://www.intrinsic-id.com/intrinsic-id-
to-showcase-trustedsensor-iot-security-solution-at-invensense-
developers-conference/, Accessed on: Jul. 8, 2016.

[22] V. van der Leest, “SBIR project: Bring your own security,” NCSRA
Symposium. 2015 [Online]. Available: https://www.dcypher.nl/
files/Intrinsic-ID.pdf, Accessed on: Jul. 8, 2016.

[23] G.-J. Schrijen and V. van der Leest, “Comparative analysis of
SRAM memories used as PUF primitives,” in Proc. Conf. Des.,
Autom. Test Eur., 2012, pp. 1319–1324.

[24] G. Selimis, M. Konijnenburg, M. Ashouei, J. Huisken, H. De Groot,
V. Van der Leest, G.-J. Schrijen, M. Van Hulst, and P. Tuyls,
“Evaluation of 90 nm 6T-SRAM as physical unclonable function
for secure key generation in wireless sensor nodes,” in Proc. IEEE
Int. Symp. Circuits Syst., 2011, pp. 567–570.

[25] R. Maes, V. Ro�zi�c, I. Verbauwhede, P. Koeberl, E. Van der Sluis,
and V. Van der Leest, “Experimental evaluation of physically
unclonable functions in 65 nm CMOS,” in Proc. European Solid-
State Circuits Conf. (ESSCIRC), 2012, pp. 486–489.

[26] S. Katzenbeisser, €U. Kocabaş, V. Ro�zi�c, A.-R. Sadeghi, I. Verbau-
whede, and C. Wachsmann, “PUFs: Myth, fact or busted? A secu-
rity evaluation of physically unclonable functions (PUFs) cast in
silicon,” in Proc. Int. Workshop Cryptographic Hardware Embedded
Syst., 2012, pp. 283–301.

[27] A. Bacha and R. Teodorescu, “Authenticache: Harnessing cache
ECC for system authentication,” in Proc. Int. Symp. Microarchitec-
ture, 2015, pp. 128–140.

[28] S. Rosenblatt, S. Chellappa, A. Cestero, N. Robson, T. Kirihata,
and S. S. Iyer, “A self-authenticating chip architecture using an
intrinsic fingerprint of embedded DRAM,” IEEE J. Solid-State
Circuits, vol. 48, no. 11, pp. 2934–2943, Nov. 2013.

[29] F. Tehranipoor, N. Karimian, K. Xiao, and J. Chandy, “DRAM
based intrinsic physical unclonable functions for system level
security,” in Proc. Great Lakes Symp. VLSI, 2015, pp. 15–20.

[30] F. Tehranipoor, N. Karimian, W. Yan, and J. A. Chandy, “DRAM-
based intrinsic physically unclonable functions for system-level
security and authentication,” IEEE Trans. Very Large Scale Integr.
Syst., vol. 25, no. 3, pp. 1085–1097, Mar. 2017.

[31] S. Sutar, A. Raha, and V. Raghunathan, “D-PUF: An intrinsically
reconfigurable DRAM PUF for device authentication in embed-
ded systems,” in Proc. Int. Conf. Compilers, Architectures, Sythesis
Embedded Syst. (CASES), 2016, pp. 1–10.

[32] C. Keller, F. Gurkaynak, H. Kaeslin, and N. Felber, “Dynamic
memory-based physically unclonable function for the generation
of unique identifiers and true random numbers,” in Proc. IEEE
Int. Symp. Circuits Syst., 2014, pp. 2740–2743.

[33] W. Xiong, A. Schaller, N. A. Anagnostopoulos, M. U. Saleem,
S. Gabmeyer, S. Katzenbeisser, and J. Szefer, “Run-time accessible
DRAM PUFs in commodity devices,” in Proc. Conf. Cryptographic
Hardware Embedded Syst., Aug. 2016, pp. 432–453.

[34] P. Prabhu, A. Akel, L. M. Grupp, S. Y. Wing-Kei, G. E. Suh, E. Kan,
and S. Swanson, “Extracting device fingerprints from flash mem-
ory by exploiting physical variations,” in Proc. Int. Conf. Trust
Trustworthy Comput., 2011, pp. 188–201.

[35] Y. Wang, W.-K. Yu, S. Wu, G. Malysa, G. E. Suh, and E. C. Kan,
“Flash memory for ubiquitous hardware security functions: True
random number generation and device fingerprints,” in Proc.
IEEE Symp. Secur. Privacy, 2012, pp. 33–47.

[36] S. Rosenblatt, D. Fainstein, A. Cestero, J. Safran, N. Robson,
T. Kirihata, and S. S. Iyer, “Field tolerant dynamic intrinsic
chip ID using 32 nm high-K/metal gate SOI embedded
DRAM,” IEEE J. Solid-State Circuits, vol. 48, no. 4, pp. 940–947,
Apr. 2013.

[37] W. Liu, Z. Zhang, M. Li, and Z. Liu, “A trustworthy key genera-
tion prototype based on DDR3 PUF for wireless sensor networks,”
Sensors, pp. 11 542–11 556, 2014.

[38] M. S. Hashemian, B. Singh, F. Wolff, D. Weyer, S. Clay, and
C. Papachristou, “A robust authentication methodology using
physically unclonable functions in DRAM arrays,” in Proc. Des.
Autom. Test Eur. Conf., 2015, pp. 647–652.

[39] A. Rahmati, M. Hicks, D. E. Holcomb, and K. Fu, “Probable cause:
The deanonymizing effects of approximate DRAM,” in Proc. Int.
Symp. Comput. Archit., 2015, pp. 604–615.

[40] B. Keeth, R. J. Baker, B. Johnson, and F. Lin, DRAM Circuit Design:
Fundamental and High-Speed Topics. Hoboken, NJ, USA: John Wiley
& Sons, 2008.

[41] U. R€uhrmair, J. S€olter, and F. Sehnke, “On the foundations of
physical unclonable functions,” IACR Cryptology ePrint Archive,
2009. [Online]. Available: https://eprint.iacr.org/2009/277,
Accessed on: Jul. 8, 2016.

474 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 16, NO. 3, MAY/JUNE 2019

http://blackhat.com/docs/us-14/materials/us-14-Jin-Smart-Nest-Thermostat-A-Smart-Spy-In-Your-Home-WP.pdf
http://blackhat.com/docs/us-14/materials/us-14-Jin-Smart-Nest-Thermostat-A-Smart-Spy-In-Your-Home-WP.pdf
https://www.pentestpartners.com/blog/hacking-defcon-23s-iot-village-samsung-fridge, Accessed on: Jul. 8, 2016.
https://www.pentestpartners.com/blog/hacking-defcon-23s-iot-village-samsung-fridge, Accessed on: Jul. 8, 2016.
https://www.pentestpartners.com/blog/hacking-defcon-23s-iot-village-samsung-fridge, Accessed on: Jul. 8, 2016.
https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
http://www.wired.com/2014/01/theres-no-good-way-to-patch-the-internet-o f-things-and-thats-a-huge-problem/
http://www.wired.com/2014/01/theres-no-good-way-to-patch-the-internet-o f-things-and-thats-a-huge-problem/
https://www.intrinsic-id.com/intrinsic-id-to-showcase-trustedsensor-iot-security-solution-at-invensense-developers-conference/
https://www.intrinsic-id.com/intrinsic-id-to-showcase-trustedsensor-iot-security-solution-at-invensense-developers-conference/
https://www.intrinsic-id.com/intrinsic-id-to-showcase-trustedsensor-iot-security-solution-at-invensense-developers-conference/
https://www.dcypher.nl/files/Intrinsic-ID.pdf
https://www.dcypher.nl/files/Intrinsic-ID.pdf
https://eprint.iacr.org/2009/277

[42] C. A. Waldspurger, “Memory resource management in VMware
ESX server,” ACM SIGOPS Operating Syst. Rev., vol. 36, pp. 181–
194, 2002.

[43] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson,
K. Lai, and O. Mutlu, “Flipping bits in memory without accessing
them: An experimental study of DRAM disturbance errors,” ACM
SIGARCH Comput. Archit. News, vol. 42, pp. 361–372, 2014.

[44] A. Schaller, W. Xiong, N. A. Anagnostopoulos, M. U. Saleem,
S. Gabmeyer, S. Katzenbeisser, and J. Szefer, “Intrinsic rowham-
mer PUFs: Leveraging the rowhammer effect for improved
security,” in Proc. IEEE Int. Symp. Hardware Oriented Secur. Trust,
2017, pp. 1–7.

[45] F. Tehranipoor, N. Karimian, W. Yan, and J. A. Chandy,
“Investigation of DRAM PUFs reliability under device acceler-
ated aging effects,” in Proc. IEEE Int. Symp. Circuits Syst., 2017,
pp. 1–4.

[46] J. Liu, B. Jaiyen, Y. Kim, C. Wilkerson, and O. Mutlu, “An experi-
mental study of data retention behavior in modern DRAM devi-
ces: Implications for retention time profiling mechanisms,” ACM
SIGARCH Comput. Archit. News, vol. 41, pp. 60–71, 2013.

[47] P. Jaccard, “Etude comparative de la distribution florale dans une
portion des Alpes et du Jura,” Bulletin de la Societe Vaudoise des Sci-
ences Naturelles, vol. 37, pp. 547–579, 1901.

[48] R. Maes and V. van der Leest, “Countering the effects of silicon
aging on SRAM PUFs,” in Proc. IEEE Int. Symp. Hardware-Oriented
Secur. Trust, 2014, pp. 148–153.

[49] A. Schaller, B. �Skori�c, and S. Katzenbeisser, “On the systematic
drift of physically unclonable functions due to aging,” in Proc. Int.
Workshop Trustworthy Embedded Devices, 2015, pp. 15–20.

[50] B. Schroeder, E. Pinheiro, and W.-D. Weber, “DRAM errors in the
wild: A large-scale field study,” in ACM SIGMETRICS Perform.
Eval. Rev., vol. 37, pp. 193–204, 2009.

[51] J.-P. Linnartz and P. Tuyls, “New shielding functions to enhance
privacy and prevent misuse of biometric templates,” in Int. Conf.
Audio-and Video-Based Biomet. Person Authentication, Berlin, Ger-
many: Springer, 2003, pp. 393–402.

[52] Y. Dodis, L. Reyzin, and A. Smith, “Fuzzy extractors: How to
generate strong keys from biometrics and other noisy data,” in
Advances in Cryptology—EUROCRYPT, 2004, pp. 523–540.

[53] Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith, “Fuzzy Extrac-
tors: How to generate strong keys from biometrics and other noisy
data,” SIAM J. Comput., vol. 38, no. 1, pp. 97–139, 2008.

[54] X. Boyen, “Reusable cryptographic fuzzy extractors,” in Proc.
ACM Conf. Comput. Commun. Secur., 2004, pp. 82–91.

[55] C. B€osch, J. Guajardo, A.-R. Sadeghi, J. Shokrollahi, and P. Tuyls,
“Efficient helper data key extractor on FPGAs,” in Proc. Int. Work-
shop Cryptographic Hardware Embedded Syst., 2008, pp. 181–197.

[56] C. Bennett, G. Brassard, C. Cr�epeau, and M. Skubiszewska,
“Practical quantum oblivious transfer,” in Advances in Cryptol-
ogy—CRYPTO, 1991, pp. 351–366.

[57] A. Juels and M. Wattenberg, “A fuzzy commitment scheme,” in
Proc. ACM Conf. Comput. Commun. Secur., 1999, pp. 28–36.

[58] B. �Skori�c and N. de Vreede, “The spammed code offset method,”
IEEE Trans. Inf. Forensics Secur., vol. 9, no. 5, pp. 875–884, May
2014.

[59] R. Maes, V. van der Leest, E. van der Sluis, and F. Willems,
“Secure key generation from biased PUFs,” in Proc. Int. Workshop
Cryptographic Hardware Embedded Syst., 2015, pp. 517–534.

[60] B. �Skori�c, “A trivial debiasing scheme for helper data systems,”
IACR Cryptology ePrint Archive, 2016. [Online]. Available: https://
eprint.iacr.org/2016/241, Accessed on: Jul. 8, 2016.

[61] M.-D. Yu and S. Devadas, “Secure and robust error correction for
physical unclonable functions,” IEEE Des. Test Comput., vol. 27,
no. 1, pp. 48–65, Jan./Feb. 2010.

[62] J. L. Carter and M. N. Wegman, “Universal classes of hash
functions,” J. Comput. Syst. Sci., vol. 18, no. 2, pp. 143–154, 1979.

[63] D. Stinson, “Universal hashing and authentication codes,” Des.
Codes Cryptography, vol. 4, pp. 369–380, 1994.

[64] Y. Dodis, K. Pietrzak, and D. Wichs, “Key derivation without
entropy waste,” in Advances in Cryptology—EUROCRYPT, 2014,
pp. 93–110.

Andr�e Schaller received the PhD degree for his research regarding
lightweight applications for intrinsic Physically Unclonable Functions
(PUFs) on commodity devices, from TU Darmstadt, Germany, in 2017.
His research interests include hardware-based and embedded security,
with a special focus on PUFs.

Wenjie Xiong received the BSc degree in microelectronics and psy-
chology from Peking University, China, in 2014. She is currently working
toward the PhD degree in the Department of Electrical Engineering,
Yale University, USA, under Prof. Jakub Szefer. Her research interests
include physically unclonable functions, physical cryptography, and
security verification of processor architectures.

Nikolaos Athanasios Anagnostopoulos (S’18) received the BSc
degree in computer science from the Aristotles University of Thessalo-
niki, Greece, in 2012, the MSc degree in computer science from the Uni-
versity of Twente, the Netherlands, and the MSc degree in innovation in
information and communication technology from TU Berlin, Germany,
in 2014, and is currently working toward the PhD degree in the Security
Engineering Group, Technical University of Darmstadt, Germany. His
research interests include hardware security, with a focus on embedded
devices, PUFs and IoT. He is a student member of the IEEE.

Muhammad Umair Saleem received the BSc degree in electronics
engineering from the Bahauddin Zakariya University Multan, Pakistan,
in 2012, and the MSc degree in Information and Communication Engi-
neering from TU Darmstadt, Germany, in 2018. His research interests
include embedded systems, internet of things, automation, and embed-
ded security.

Sebastian Gabmeyer received the PhD degree on model checking
based verification techniques for graph transformations from the Vienna
University of Technology, Austria, in 2015, and was with the Security
Engineering Group in TU Darmstadt, Germany, until late 2017. His
research interests include hardware security and software verification.

Boris �Skori�c received the Ph.D. degree in theoretical physics from the
University of Amsterdam, The Netherlands, in 1999. From 1999 to 2008,
hewas a research scientist with Philips Research, TheNetherlands, work-
ing first on display physics and later on security topics. In 2008, he joined
the Department of Mathematics and Computer Science, Eindhoven
University of Technology, TheNetherlands, as anAssistant Professor.

Stefan Katzenbeisser (S’98-A’01–M’07-SM’12) received the PhD
degree from the Vienna University of Technology, Austria. After working
as a research scientist with the Technical University of Munich, Ger-
many, he joined Philips Research as a senior scientist in 2006. Since
2008, he has been a professor with the Technical University of Darm-
stadt, heading the Security Engineering Group. His current research
interests include embedded security, data privacy, and cryptographic
protocol design. He has authored more than 200 scientific publications
and served on the program committees of several workshops and con-
ferences devoted to information security. He is currently serving on the
Information Forensics and Security Technical Committee of the IEEE
Signal Processing Society. He is a senior member of the IEEE.

Jakub Szefer received the BSc (highest honors) degree in electrical
and computer engineering from the University of Illinois at Urbana-
Champaign, and the MA and PhD degrees in electrical engineering
from Princeton University where he worked with Prof. Ruby B. Lee on
secure hardware architectures. He joined Yale University in summer
2013 as an assistant professor of electrical engineering, where he
started the Computer Architecture and Security Laboratory (CAS Lab).
His research interests include the intersection of computer architecture,
system software, and hardware security. His research focuses on
secure hardware-software architectures for servers and mobile devices,
virtualization and cloud security, hardware security verification, physi-
cally unclonable functions, and hardware FPGA implementation of cryp-
tographic algorithms. His research is supported through National
Science Foundation and industry donations.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

SCHALLER ET AL.: DECAY-BASED DRAM PUFS IN COMMODITY DEVICES 475

https://eprint.iacr.org/2016/241
https://eprint.iacr.org/2016/241

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

