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Abstract—The ubiquity and pervasiveness of modern Internet
of Things (IoT) devices opens up vast possibilities for novel
applications, but simultaneously also allows spying on, and
collecting data from, unsuspecting users to a previously unseen
extent. This paper details a new attack form in this vein, in
which the decay properties of widespread, off-the-shelf DRAM
modules are exploited to accurately spy on the temperature
in the vicinity of the DRAM-carrying device. Among others,
this enables adversaries to remotely and purely digitally spy
on personal behavior in users’ private homes, or to collect
security-critical data in server farms, cloud storage centers, or
commercial production lines. We demonstrate that our attack can
be performed by merely compromising the software of an IoT
device and does not require hardware modifications or physical
access at attack time. It can achieve temperature resolutions of
up to 0.5◦C over a range of 0◦C to 70◦C in practice. The
presented attack works in devices that do not have a dedicated
temperature sensor on board; as the DRAM modules already
present in the device are abused to spy on the temperature. To
complete the work, the paper discusses practical attack scenarios
as well as possible countermeasures against the new temperature-
spying attacks.
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I. INTRODUCTION

INTERNET of Things (IoT) devices have become more
pervasive and ubiquitous than ever before in history, and

are still enjoying an unbroken and continuous growth: As
estimated by Taylor et al., the number of connected devices
will exceed 100 billion by 2025 [1]. Their versatility allows
applications in a large number of settings, including private
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and commercial uses in homes, companies, or factories. Un-
fortunately, this situation also induces pressing privacy and
security problems: Once an IoT device has been compromised,
attackers can gather sensitive information remotely, as, by
definition, it will be connected to the World Wide Web.

To defend against such threats, intense efforts have been
made to ensure that the software of IoT devices will handle
any information generated by the devices’ multiple sensors
in a secure manner [2]–[4]. For example, in order to pro-
tect acoustic signals in the device environment, dedicated
software may safeguard any information collected from the
device’s microphones [5]. However, even if all information
collected from traditional sensors is properly protected, critical
data may also be gathered from other, unprotected device
components [6], [7], leading to covert and unforeseen es-
pionage channels [8]–[10]. For example, while gyroscope
measurements originally were considered suitable only for
motion detection, researchers found ways to misuse them for
measuring acoustic signals [6]. This allows gathering sound
recordings and recognizing speech [5]. As another example,
the power usage of a mobile phone can be used to track
the current position of users [11], threatening their location
privacy. As long as the ability of each device component to
collect critical information is not comprehensively understood,
attacks of this type are hard to prevent. They put the users’
privacy and security at risk, even in the presence of standard
sensor-protecting measures. Consequentially, protecting single
selected sensors is insufficient to guarantee a holistic protec-
tion of users.

This article adds to this line of research. It discusses novel
methods by which standard, widespread DRAM modules,
which are part of every smartphone, laptop, or embedded
device, can be abused to spy on users, and to remotely monitor
the ambient temperature around the host device. It is long
known that such ambient temperature contains a significant
amount of security-critical information:

• If measured at the victim’s home, it can reveal the victim’s
daily routines, including holidays, or routinely repeating
periods of the day during which no one is present to guard
the home;

• If measured at a production line, it can reveal the tempera-
ture of the manufacturing process of a product;

• If measured at a data center, it can reveal the activity of the
tenants [12].
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On a technical level, our attack works by exploiting the
temperature-dependent “retention times” of DRAM cells.
The retention time of a single DRAM cell is defined as
the maximal time period this cell can hold its stored value
without being refreshed (i.e., how long it holds its value when
the DRAM refresh operation has been disabled). It is long
known that this retention time depends heavily on the ambient
temperature and that it even decreases exponentially with
increasing temperature [13]–[15]. Following this observation,
we turn the individual retention times of DRAM cells into
a highly sensitive thermometer. In greater detail, we observe
the number of flipped cells (i.e., the number of cells that
change their original content) in a given DRAM memory array
with disabled refresh after a certain time period has elapsed.
From this number, we can then indirectly conclude the ambient
temperature. As we show in this paper, this approach allows
temperature measurements over a large temperature range with
a resolution of up to 0.5 °C.

Our attack can be applied without measuring or registering
the DRAM module under attack at multiple known tempera-
tures in advance, as long as the general temperature-dependent
characteristics of the used class of DRAM modules are known
to the attacker. Furthermore, no physical modifications such
as hardware Trojans or the like are required, and neither
is physical access to the device at attack time. Finally, and
perhaps most interestingly, our technique can even be used to
remotely spy on the temperature in devices that do not contain
temperature sensors at all. It only requires compromising the
software of an IoT device: Kernel access (in order to disable
the DRAM refresh operation) is both necessary and sufficient
for our method to work. This prerequisite can be met, for
example, in an attack scenario where a malicious device driver
is provided by an attacker that encapsulates the code of our
attack. Installing the kernel driver necessitates kernel access
rights which permits the installation of our attack code without
the user’s knowledge. Once an attacker has gained access
to the kernel, he or she can effortlessly control the memory
controller and disable its refresh operation.

A. Our Contributions

This article is an extended version of our earlier conference
paper [16]. In the original work, it was demonstrated that
DRAM decay can be used to measure the ambient temperature
only utilizing modified software on IoT devices. An attacker
can practically conduct the DRAM decay enrollments at a
constant ambient temperature to later map the DRAM decay
measurement results to different temperatures and guess the
user’s behavior or environmental changes. The temperature
resolution was shown to be as good as 0.5 °C in commodity,
off-the-shelf IoT devices, enabling attackers to measure fine-
grained temperature changes around the IoT devices.

To the best of our knowledge, this is the first paper evalu-
ating temperature spying attacks based on DRAM decay with
such a high temperature precision. Furthermore, this extended
version now contains the following additional contributions:
• Additional measurements were carried out with higher preci-

sion and using at a greater temperature range compared with

the original paper. Now, each measurement is taken within
a stable temperature environment (a temperature chamber)
with a deviation of at most 0.1 °C, and over a temperature
range from 0 °C to 70 °C in 2.5 °C increments. In the
original paper, only measurements from 20 °C to 45 °C
were taken.

• A novel temperature estimation function has been developed
and subsequently demonstrated in two attacks. This function
facilitates the ability to enroll the measurements on a similar
device like the one under attack, thereby increasing the prac-
ticability of our attack. The absolute ambient temperature in
the vicinity of a device can be measured by capturing only a
single measurement at a predetermined temperature on the
device under attack instead of merely measuring relative
temperature changes as in the initial paper.

• Finally, we first present methods to detect and prevent such
kinds of attacks in practice. For example, we experimentally
prove that putting the device inside a closed box will conse-
quently distort the temperature measurements, disabling the
attacks.

B. Related Work

Various related works exist that describe the dependence
of the DRAM retention time on ambient temperature. We
additionally analyze other temperature-dependent methods that
can be utilized on DRAM modules to determine the device’s
ambient temperature.

A paper discussing sensors based on intrinsic Physical Un-
clonable Functions (PUFs) was published by Chen et al. [17].
The paper demonstrated the feasibility of measuring the tem-
perature through the DRAM retention effect on Raspberry
Pis when disabling the DRAM refresh operation. The authors
evaluated the temperature estimation in the range of 15 °C to
40 °C using the bit-flips occurring at a decay time of 60 s.
Compared to our work, an accuracy of only ±4 °C could be
achieved. Moreover, the authors presented a test setup that
modifies device firmware to execute the measurements in a
bare-metal program, instead of booting an entire operating
system kernel.

Tian et al. [18] published a paper which presents techniques
to generate fingerprints on FPGAs to identify them in cloud
infrastructures. One contribution of this paper is to monitor the
temperature in the vicinity of FPGAs using bit-flips obtained
from DRAM decay measurements. This work demonstrates
temperature-spying attacks which were conducted on Xilinx
Virtex Ultrascale+ Boards equipped with DDR4 memory mod-
ules.

Liang et al. [19] further analyzes temperature side-channel
attacks executed on FPGAs. The authors exploit the high
sensitivity of the signal propagation of Time-Digital Convert-
ers (TDCs) to estimate the ambient temperature of FPGAs
in cloud systems. These measurements serve as the basis
for analyzing the correlation between the temperature in the
proximity of the FPGA and the temperature outside the data
center, therefore providing insights if cool air from outside is
used to cool the data center. Moreover, this new approach
is complemented with DRAM retention-based temperature
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side channels on DDR4 memory yielding a more precise
temperature estimation.

Giechaskiel et al. [20] published a paper about information
leaks in cloud infrastructures. Here, bit-flips in DRAM mem-
ory modules of FPGAs were used to monitor the temperature
in the vicinity of FPGAs within data centers. A second paper
published by Giechaskiel et al. [21] describes the same attack
as in the previous paper in more detail and additionally demon-
strates an attack using 24 FPGAs to monitor the temperature
over 24 hours.

Another work describing the dependence of the DRAM
retention time on the temperature was published by Wang
et al. [22]. This paper focuses on computing at cryogenic
temperatures, for example, required to implement quantum
computers. For this reason, the retention of DRAM memory
modules was examined on temperatures from 358K, 77K and
263K.

Orosa et al. [23] utilize row-hammering to measure the
ambient temperature in the vicinity of FPGAs equipped with
DDR4 memory. Overall, absolute and relative temperature
changes could be measured with a precision of less than
2.5 °C, but not better than ±1 °C.

In comparison to the above-mentioned papers, our paper
provides a more detailed evaluation of various temperatures,
resulting in a precision of up to ±0.5 °C; two different attacks
are demonstrated and countermeasures are implemented and
proven. Additionally, some of the papers exploit temperature-
dependent methods aside from the DRAM retention effect
to spy on the device’s ambient temperature. Such methods
include, calculating the temperature from the amount of bit-
flips caused by row-hammering or by exceeding the memory
module’s write and read latency. However, these methods have
various drawbacks that will be analyzed in the following.
There are several reasons why we choose DRAM retention
among these alternatives. One reason is that our attack is more
generic since only the DRAM refresh needs to be disabled. In
contrast, DRAM-latency and row-hammering methods depend
on the physical structure of the memory. For instance, in the
case of row-hammering, the physical structure of the memory
has to be reverse-engineered to hammer on neighboring cells.
Similarly, DRAM latency measurements differ, depending on
which region the requested cells are situated in, requiring
further knowledge about the physical structure of the memory.
Furthermore, we assume that a higher precision could be
obtained using DRAM retention due to the ability to adjust
the decay time in a very fine-grained manner.

The DRAM retention effect was also utilized to generate
cryptographic keys or to provide authentication in the context
of PUFs. Our research leverages the same effect but without
relying on PUF properties like uniqueness, uniformity, or
randomness. In support of our approach, various PUF papers
have been studied, containing valuable information regarding
the DRAM retention effect in general.

Anagnostopoulos et al. [24] and Schaller et al. [25] investi-
gated the DRAM retention effect under different temperatures
in a PUF context. In these publications, row-hammering PUFs
and DRAM-retention PUFs were examined on PandaBoards
and Intel Galileo boards. They describe the dependence of

the two PUF constructions on the supply voltage and ambient
temperature, tested from temperatures ranging from 25 °C to
40 °C [24] and from 40 °C to 80 °C [25].

Müelich et al. [26] present a theoretical model which
captures the instabilities of PUF responses. DRAM retention
PUFs are evaluated on temperatures from 25 °C to 90 °C.

There are several additional papers related to DRAM reten-
tion PUFs, e.g. [14], [15], [24], [25], [27]–[32]. For instance,
PUFatt [33] demonstrates an ALU PUF-based secure remote
attestation scheme for embedded systems. SHAIP [34] is a
PUF-based mutual authentication framework with an unlimited
number of authentications and a privacy-preserving property.
BIST-PUF [35] enables the real-time assessment of PUF’s
unpredictability and stability in hardware. The emerging trends
and challenges of PUFs and robust protocols are discussed in
[36], [37]. Similar to other PUF solutions [38]–[43], these
PUFs may potentially provide improved resilience against
invasive [44] and side-channel attacks [45]. The said DRAM
decay, among other things, depends highly on the temper-
ature [13]–[15], [24], [32], with an increased temperature
accelerating the charge leakage and the decay process.

C. Organization of This Paper

The rest of this article is organized as follows: Section II
presents background information on DRAMs and their decay
behavior when the refresh operation is disabled. Section III
discusses how DRAM retention was implemented. In partic-
ular, we describes how the enrollment is done along with
an explanation of the temperature estimation process nec-
essary for two presented attacks: The first one spies upon
relative temperature changes, and the second one is monitoring
absolute temperature and can be utilized on a device not
measured beforehand. The subsequent Section IV evaluates
the methods introduced in the previous section; it includes an
analysis of the measurement results from the enrollment and
the attack execution. Attack detection and prevention methods
are suggested, implemented, and successfully demonstrated in
Section V. Finally, Section VI concludes this work.

II. BACKGROUND: DRAM CELLS AND THEIR
DECAY CHARACTERISTICS

DRAM is one of the most widely used memory types
in computer devices. In DRAM, each bit of data is stored
in a DRAM cell that consists of an access transistor and a
capacitor, as shown in Figure 1 (a).

Each capacitor of the DRAM cell has two states, charged
and discharged, which are used to store one bit of data. Word
Lines (WL) are used to enable the access transistors, and Bit
Lines (BL) to read out data. Data from two complementary bit
lines (BL and BL*) are amplified through a sense amplifier.
The amplifier is used to convert analog voltage levels into
either full VDD or 0V depending on the present voltage on
the capacitor.

DRAM is a volatile memory, and the stored data will be lost
if refresh or power is turned off. This is because capacitors lose
charge over time.Figure 1 (a) shows possible paths through
which the charge on each capacitor can leak. To prevent
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Fig. 1. (a) DRAM cell schematic. (b) Temperature dependency of the fractional bit-flips for DRAM modules from a tested Intel Galileo board. (c) Illustration
of a sample DRAM array decay measurement at temperatures Ti and Ti+1, both with the same decay time t; the highlighted cells are the cells where a
bit-flip occurs – for the same decay time, more cells flip at the higher temperature (illustrated as red cells).

data loss, each DRAM cell requires a periodic refresh. Most
memory modules have a refresh period of 64ms.

When DRAM refresh is disabled, charged cells will steadily
lose charge. If a charged cell loses enough charge, it becomes
discharged, and the stored bit of data flips. The loss of charge
over time is referred to as DRAM decay. The time, a cell can
keep a bit value without refresh is called the retention time.
Different DRAM cells have different retention times. Thus,
if the refresh operation is disabled for a longer time, more
cells’ retention times are exceeded, and more bit-flips appear.
Meanwhile, if a cell is initialized to a discharged state, its
value will never flip as there is no charge to leak.

A DRAM decay measurement is a measurement showing
which DRAM cells have flipped in a DRAM region after a
given decay time t has elapsed. To perform a DRAM decay
measurement, first, a DRAM region is selected and the cells
in this region are initialized to a known value. For example,
this work uses logical 0 as the initial value of all the cells1.
The DRAM region is then allowed to decay, i.e., the refresh
operation is disabled, for time t. After the elapsed time t, the
DRAM region is read, to observe which cells have flipped
their initialized logical value of 0 to logical 1. These cells are
the ones that have decayed during time t.

The fractional number of bit-flips (i.e., the number of bit-
flips in the DRAM region divided by the size of this region)
for an Intel Galileo board [46] is shown in Figure 1 (b). The
number of bit-flips increases as the temperature increases.
Also, using a decay time of t = 120 s will result in more
bit-flips than using a shorter decay time of t = 60 s, for
example. Figure 1 (c) illustrates example DRAM decay results
for the same decay time t, but at temperatures Ti and Ti+1

(Ti+1 > Ti). More bit-flips appear at the higher temperature
Ti+1, compared to the lower temperature Ti. Also, bit-flips
that occur at a lower temperature are a subset of the bit-flips
that occur at a higher temperature.

1Note that some DRAM cells map logical 0 to the charged state, whilst
others map logical 1 to the charged state. The exact mapping is not published
by DRAM manufacturers, but we have empirically derived that about half the
cells in the tested DRAM modules map logical 0 to the charged state. The
cells that map logical 0 to the discharged state simply do not contribute any
value to the measurement, but also do not interfere with it.

III. IMPLEMENTATION

This section describes our implementation of the kernel
module, which disables the DRAM retention, and keeps the
operating system’s kernel functioning. In addition, we provide
an overview of the enrollment process that facilitates the
development of precise estimation functions.

A. Compromising the Kernel and Disabling the DRAM Re-
fresh

Many IoT devices do not have a dedicated temperature
sensor – this work shows that even in the absence of a
temperature sensor, attackers can still leverage DRAM cells in
IoT devices to obtain the ambient temperature. The attacker
first needs to compromise the device under attack remotely to
be able to control the DRAM refresh. Usually, he or she needs
to compromise the kernel (for some devices also the firmware
needs to be modified) to measure the DRAM decay. Many
IoT devices are vulnerable to exploits that can give kernel
privileges.

Our presented attacks are utilized to spy on temperature
changes in the vicinity of servers and IoT devices over time.
Thus the DRAM decay measurements need to be carried
out during system runtime. However, executing DRAM de-
cay measurements while maintaining the system’s reliability
without additional hardware poses a significant challenge. This
is due to the fact that the DRAM refresh operation can only
be disabled for the whole DRAM module and not for arbitrary
memory regions.

Once the whole DRAM module’s refresh is disabled, all
memory content will eventually decay, and errors in the
memory contents will cause the system to crash. As a solution,
similar to the approach of [14], this work uses a kernel module
to disable the refresh of the whole DRAM module while
issuing extra memory accesses to the memory regions holding
the critical system data. Each DRAM access also acts as a
refresh, so the system data that are explicitly accessed will not
decay. At the same time, the other cells in the DRAM, which
are not accessed, will decay. To obtain a readout at a precise
point of time, we modify the firmware of the compromised
board in such a way that, after the decay time has elapsed, the
reserved memory region is immediately copied to a different
region in the RAM and the refresh is reactivated. This avoids
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additional bit-flips during reading and, thus, avoids distortion
of the measurement results.

B. Spying on Relative Temperature Changes

In this section, we describe how we can estimate relative
temperature changes in the vicinity of a device by capturing
“indicator cells” in certain memory regions. With this method
we can spy on temperature changes relative to a reference
temperature, which must be known on the attacked device.
This method requires an enrollment on the attacked device.

1) Simulating enrollments based on the bit-flips to temper-
ature approximation: Based on measurements of bit-flips at
certain constant temperatures, we show how a measurement
with a DRAM decay treal and temperature Treal can be
utilized to simulate the decay tsim at a temperature Tsim. This
simulation is accomplished through a mathematical model,
describing the relation between bit-flips and the temperature,
which is further explained in this section.

We denote ∆Trs = Treal − Tsim, which is the tempera-
ture difference between the real temperature (Treal), and the
temperature that the attacker can measure during enrollment
to simulate the real temperature (Tsim). As indicated in the
works of Xiong et al. [14] and Schaller et al. [25], the DRAM
decay time tsim and treal, and temperature ∆Trs have the
following relationship:

tsim = treal ∗ ek∆Trs . (1)
Furthermore, we test that identical models of DRAM

chips have the same temperature index k, so the attacker can
compute k using his or her own device (where he or she can
control the temperature), to then use that k for the attack on a
remote device. The index k is estimated based on enrollment
measurements discussed in Section IV-B1.

2) Indicator Cells: The execution of temperature-spying
attacks requires capturing the bit-flips in a certain memory
region, which potentially consumes a high bandwidth by
accessing the memory and transmitting the data to an attacker.
One method to reduce the required bandwidth, making the
attack also less detectable, is the usage of “indicator cells”. An
ideal indicator cell for a decay time Ti should never flip when
being measured with the same decay time Ti and always flip
when evaluated with a longer decay time Ti+1. The difference
of two decay times Ti and Ti+1, depends on the desired
temperature resolution. When the attacker attempts to derive
the temperature from the DRAM decay measurements, he or
she will use l indicator cells and perform majority votes. The
minimum value of l is 3. With l = 3, an error rate of up to
33% can be corrected by the majority vote. With l = 5, the
majority vote can correct an error rate of 40%, and so forth. In
practice, the attacker can choose l based on the noise and the
number of available candidate indicator cells in the DRAM
region.

The Bit Error Rate (BER) for each temperature Ti is
calculated as follows:
• in the enrollment measurement, the number of candidate

indicator cells are counted;

• in the spy measurement, if an indicator cell flips at Ti or an
indicator cell does not flip at Ti+1, this cell is seen as an
error;

• the number of errors is counted and divided by the result
from step (i) to compute the BER.

The evaluation of the temperature estimation based on
indicator cells is evaluated in Section IV-B1.

3) Enrollment: Deriving the mathematical model
describing the relation between the number of bit-
flips captured at different ambient temperatures and
the corresponding temperature values, requires multiple
measurements at different temperatures captured during an
enrollment phase. For an attacker, it is typically not feasible
to control the ambient temperature of a device and to capture
all these enrollment measurements. To mitigate this problem,
different temperatures can be simulated by measurements
with multiple decay times at a constant temperature. For
example, the decay result of decay time 2t at enrollment
temperature T can be approximated by using the decay result
of decay time t at temperature T+10 °C. In this way, the
attacker takes measurements at a constant temperature T0

for decay times {t0, t1, t2, ..., tm} to simulate decay results
at {T0, T1, T2, ..., Tm} for decay time t0 at each of these
temperatures. In Section IV-B, we experimentally validate
this approach.

4) Attack phase: During the attack phase, first, the board
under attack is compromised by the kernel module described
in Section III-A. Afterwards, the enrollment phase is executed,
during which indicator cells are detected and the approxima-
tion using the mathematical model shown in Equation (1) is
derived, which requires to estimate k. The attack requires a
dedicated memory region to be reserved to execute DRAM
retention measurements. Afterwards, only the indicator cells
are measured, and the results are transmitted to the attacker.
Depending on the frequency of the temperature measurements
and the adjusted decay time, the control over this region can
be returned to the operating system kernel between attack
executions. In Section IV-B3 two practical attacks scenarios,
one spying on the temperature in the vicinity of a server in
a data center, and the second spying on the temperature in a
user’s home using an IoT device, are demonstrated.

C. Spying on Absolute Temperature

This section presents a second method on how to estimate
the correlation between bit-flips and a device’s ambient
temperature. In contrast to the previously introduced method,
this method returns absolute temperature values and enables
an enrollment on a different device than the one used during
the attack.

1) Approximating the temperature-estimation function: For
the attacks spying on absolute temperatures, we propose the
following function to approximate the dependency between
the absolute temperature in the vicinity of a device and the



IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023 6

number of bit-flips, both for the initial enrollment and during
the subsequent attack.

Tapx = c1 · ec2 · (bfT · p). (2)

Here, a temperature Tapx is approximated, given bfT , the
average number of bit-flips of multiple similar boards with
a decay time of t depending on the temperature T . The
parameter p is calculated as follows:

p =
bfTk

enr

bfTk

obs

, (3)

and relates the number of bit flips observed in a particular
board under a known temperature Tk, denoted by bfTk

obs, to
the bfTk

enr that has been observed during the enrollment (in the
board used for the enrollment) for temperature T , denoted
by bfTenr, if TK = T , or the number of bit-flips that is
calculated for TK based on the enrollment measurement for
T and Equation (2). Thus, Tk can be any temperature as long
as bfTk

obs and bfTk
enr correspond to devices of the same model,

which have the same constants c1 and c2. Obviously, for the
measurements of the same board, p is 1. The constants c1 and
c2 are optimized during the enrollment process that utilises the
whole temperature range, such that Tapx is close to T , given
bfTenr.

To spy on the temperature of a previously unseen device
(of a known model for which other devices have been
fully enrolled), the number of bit-flips bfTspy captured at
an unknown temperature T is used as bfT in Equation (2).
Additionally, the parameter p needs to be calculated using
Equation (3), and a single enrollment measurement bfTk

spy of
the attacked device under a known temperature Tk, which
acts as the bfTk

obs. This measurement is necessary to capture
absolute temperatures in the vicinity of a device.

In this way, for example, enrollment measurements of
multiple boards can be used to approximate the temperature
based on the number of bit-flips, independent of the Galileo
board that is used to spy on the temperature. Better results can
be achieved at higher temperatures due to a higher number and
stability of bit-flips.

The need for only a single enrollment measurement allows
us to execute the attack much more efficiently because a
smaller amount of data needs to be transmitted compared
to an enrollment that utilises the whole temperature range.
Additionally, the extrapolation using p allows a precise
temperature approximation on devices with a high deviation
in the absolute number of bit-flips, because the dependency
between the bit-flips and the temperature will follow the
same function in similar devices, notwithstanding the absolute
number of bit-flips. Moreover, the extrapolation using p,
and the fact that devices of the same type demonstrate
the same dependency between the number of bit-flips and
the temperature, allow for the use of much smaller memory
regions, compared to the enrollment measurement that uses the
whole temperature range, to spy on the ambient temperature.

2) Enrollment: To execute the attack, m enrollment mea-
surements at a fixed decay time t and m different temper-
atures {T0, T1, T2, ..., Tm}, covering the temperature range
of interest, must be taken. It is not necessary to capture
these measurements on the target device, which would require
controlling its ambient temperature. The measurements can
rather be obtained from an additional device that the attacker
possesses. Afterwards, the relation between the bit-flips and
the ambient temperature can be derived, by estimating the
constants c0 and c1 of the mathematical model, presented
in Equation (2).If it is necessary to obtain absolute tempera-
tures, a single measurement at a known temperature is required
on the target device.

To achieve precise evaluation results and thus to be able to
create an accurate mathematical model to estimate the ambient
temperature based on the captured number of bit-flips, we
propose to perform the enrollment in a climate chamber that
enables precise temperature control. A measurement server
starts the tests on the boards and simultaneously monitors
and controls the temperature of the climate chamber, which
requires some time until the temperature stabilizes. That is
the reason why after reaching the target temperature, the
test program on the measurement server checks for 90 s if
the temperature is within the acceptance range, which is
in our case ±0.1 °C. Only if this requirement is met, the
experiments are started.

3) Attack phase: Similar to the attack phase described
in Section III-B4, we require again a compromised kernel with
our kernel module being installed. Compared to the previously
explained attack scenario, the number of decayed cells in
a reserved memory region is counted on the compromised
device, and only the number of bit-flips is transmitted to the
attacker. The attacker knows the mathematical model based
on Equation (2). The constants c0 and c1 are derived from
the enrollment measurements on a similar device. The factor
p is retrieved from Equation (3), using the number of bit-flips
bfTk

enr measured at a known temperature Tk from the attacked
device and bfTk

obs, the amount of bit-flips captured on the
device used during the enrollment at the same temperature Tk.
This allows the attacker to estimate the ambient temperature
based on the transmitted number of bit-flips. In Section IV-C3,
two different attack scenarios are demonstrated in which bit-
flips are transmitted by an Ethernet connection to the remote
attacker.

IV. EVALUATION

In our evaluation, first, we describe the setup of our ex-
periments and how the tests are executed. Afterwards both
attacks, one based on indicator cells and the second one
based on simply counting the number of bit-flips are evaluated
separately. In the end, the overall attack complexity of these
two attacks is evaluated.

During the evaluation of our attacks, we adhere to the
following assumptions: Overall, our attack targets devices
that are highly integrated, such as System-on-Chips (SoCs)
utilized in the IoT domain or servers employed in data centers.
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Fig. 2. Number of bit-flips in the temperature range
[T, T+1°C] versus temperature T for different
DRAM region sizes.
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Fig. 3. Average BER in the temperature range
[T, T+1°C] versus temperature T for different
DRAM region sizes.
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Fig. 4. Maximum BER in the temperature range
[T, T+1°C] versus temperature T for different
DRAM region sizes.
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Fig. 5. Number of bit-flips in the temperature range
[T, T+dT ] versus temperature T for different dT
values in a 2MiB DRAM region.
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Fig. 6. Average BER in the temperature range
[T, T+dT ] versus temperature T for different dT
values in a 2MiB DRAM region.

Temperature (°C)

M
ax

im
um

 B
ER

Fig. 7. Maximum BER in the temperature range
[T, T+dT ] versus temperature T for different dT
values in a 2MiB DRAM region.

Consequently, components like the memory controller are
assumed to be highly integrated and thus not accessible to
physical manipulation. Accordingly, we assume that, for exam-
ple, the supply voltage of the memory controller is stable and
there are no significant variations during the execution of our
attack. Furthermore, we evaluate multiple devices in multiple
temperatures without considering potential aging effects.

A. Hardware Setup

The execution of the attacks based on the DRAM retention
effect are performed on Intel Galileo Gen 2 [46] IoT develop-
ment boards, which are equipped with an Intel Quark X1000
SoC and with two 128MiB DDR3-SDRAM modules from
Micron. On these boards, the DRAM decay measurements
can be executed by loading a kernel module to measure the
DRAM decay in the chosen DRAM region during operation,
as described in Section III-A. In total, four Intel Galileo boards
are measured. To allow for an accurate evaluation of the
temperature-dependent characteristics of DRAM modules, a
TestEquity 1007C [47] and a Weisstechnik LabEvent thermal
chamber [48] are used to control the ambient temperature.

B. Evaluating Attacks to Spy on Relative Temperature
Changes

In this section, the relation of bit-flips to temperature, and
the enrollment measurements are evaluated. Furthermore, we
demonstrate the feasibility of two practical attack scenarios
spying on relative temperature changes.

1) Evaluating the temperature-simulation function: To ap-
proximate the missing constants of Equation (1), the simula-
tion measurements are taken at Tsim = 25 °C and Tsim =
30 °C to simulate the DRAM decay at the temperature ranges
Treal =20 °C to 40 °C and Treal =25 °C to 45 °C, re-
spectively. The measurements are designed to simulate the
decay time of both 60 s and 120 s. To simulate decay time
treal = 60 s (120 s), ten different decay times in the range
of tsim = 45 s to 160 s (90 s to 320 s) are measured. To
estimate the temperature index k, the simulation measurements
and the real measurements are compared. For each simulation
measurement, we find the real measurement that has the most
similar number of bit-flips, and record the pair tsim and ∆T ′

rs.
With the pairs of tsim and ∆T ′

rs across treal = 60 s or 120 s,
Tsim =25 °C or 30 °C, the relevant Treal ranges, and four Intel
Galileo boards, the best-fit temperature index of k = 0.07 can
be computed.

To show that the simulation measurements are similar to
the real measurements, using k, we compute the ∆Trs for
each tsim. We then compare each pair of real measurements
(treal, Treal) and simulation measurements (tsim, Tsim). To
compare the two measurements, we use the Jaccard Index,
which is a well-established metric to compare the similarity
of two different data sets and thus very suitable for this use
case [49]. Let R and S denote the set of bit-flips in the real
measurement and the simulation measurement, respectively.
The Jaccard Index is calculated by J = |S∩R|

|S∪R| . If the
resulting J is close to 1, it indicates high similarity between
the two measurements. Figure 8 shows the distribution of
the Jaccard Index for treal = 60 s or 120 s for all four Intel
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(a)

(b)

Fig. 8. Jaccard Index between simulation measurements at (a) 25 °C or
(b) 30 °C and real measurements with a decay time of 60 s or 120 s.

Galileo boards. Each box contains ten different simulation
decay times and the corresponding real temperatures. The
stars indicate the average of and the orange bars indicate the
median of the Jaccard Index. The Jaccard Index is higher
than 0.85 in almost every case, indicating that the simulation
measurements and the real measurements are very similar.
Thus, the enrollments can be taken at a fixed temperature to
cover a range of different temperatures.

2) Enrollment: First, DRAM decay measurements are per-
formed at T = {20, 21, ..., 45}°C, where dT = Ti+1 − Ti

denotes the step between temperature points in T , thus here
dT = 1°C. Figure 2 shows the number of candidate indicator
cells, i.e., bit-flips at temperature Ti+1 but not Ti. The results
are the average of DRAM regions on four Galileo boards. Two
decay times of t = 60 s and t = 120 s are tested, with DRAM
region sizes of 512KiB, 1MiB, and 2MiB.

To evaluate the reliability, at each temperature five mea-
surements are taken for each of the four Galileo boards. The
first measurement is used as enrollment, and the other four
measurements are used for testing the reliability. Figures 3
and 4 show the average and maximum BER of the spy
measurements.

The number of available candidate indicator cells depends
on the DRAM region size and the decay time t. In a 512KiB
DRAM region, the smallest number of candidate indicator
cells occurs when the attacker measures at 20 °C – one of
the tested boards gives only 2 indicator cells. Figures 3 and 4
show the average and maximum BER across the four boards
and four spy measurements. As shown in Figures 3 and 4, a
longer decay time, a larger DRAM region size, or a higher
temperature will result in a smaller BER. This is because
a longer decay time, a larger DRAM region, and a higher
temperature, each yields a higher number of and more reliable
indicator cells. The average BER is much smaller than the
maximum case, meaning that there are only a few cases where
the BER is high. As shown in Figure 4, to obtain reliable
results for l = 3, at least, 1MiB DRAM region size is needed
to achieve a BER of less than 33%. For l = 5 or more, a

memory region of 1MB is sufficient to achieve a BER of less
than to 40%.

We further explore different temperature resolutions, where
dT = 0.5°C, 1°C, 2°C separately. The results in Figures 5
to 7 are retrieved from all four Galileo boards, with a DRAM
region of 2MiB and a decay time of either 60 s or 120 s. The
data are processed in the same way as in Figures 2 to 4. As
shown in Figure 5, at least 5 indicator cells can be found in
2MiB regions in the temperature range [Ti, Ti + dT ] for all
Ti and dT considered.

The average BER, shown in Figure 6, is again much
smaller than the maximum case, however Figure 7 shows that
when t = 120 s and dT = 0.5 °C, the maximum BER can still
be corrected by the majority vote of l = 3 cells. Nevertheless,
with a decay time t = 60 s and dT = 0.5 °C, the maximum
BER is too large to be corrected by the majority vote of l = 3
cells and, thus, a larger DRAM region or longer decay time
should be used.

3) Attack evaluation: This section presents the evaluation
of the attacks already described in Section III-B4. Specifically,
two attacks are presented. The first attack monitors the tem-
perature in a room, based on evaluating indicator cells using
Intel Galileo boards. A second attack involves monitoring the
workload in a data center by spying the temperatures in a
server rack. To show the practicability of the attacks, we
deployed several Intel Galileo boards openly on a table in
two rooms and in a server rack. A bare Yocto Linux kernel
was used during the test. We measured the DRAM decay
of 60 s with 2MiB DRAM region every 5min to infer the
ambient temperature. For each of the boards, enrollments with
decay times ranging from 50 s to 75 s are taken. According to
Equation (1) with k = 0.07, the enrollments can simulate the
ambient temperature change of [−3 °C, 3 °C]. Note that, in
total, 26 measurements are taken for the temperature range,
so the actual temperature resolution is higher than 0.5 °C.
A thermocouple is used to get the actual temperature read-
ings during the reference measurements. Indicator cells are
generated based on the enrollment measurements and later
used to map the decay results to temperatures. More than
twenty candidate indicator cells are found in 2MiB for each
temperature, so l = 21 is used.

In Figures 9 (a) and (b), the temperature in two different
rooms measured by the DRAM and a thermocouple for 24
hours is shown. The temperatures measured by the DRAM
match the results of the thermocouple. As shown in the figure,
during the night, the temperature is stable; while, during the
day, due to human activities, the temperature fluctuates in both
rooms. Thus, if the attacker can monitor the temperature, this
puts the victim’s privacy at risk.

In the second experiment, we deployed two Galileo boards
in a server rack. Figure 9 (c) shows the temperature measured
by two DRAM modules, DRAM1, and DRAM2. DRAM1 is
located closer to the fans, with the thermocouple being placed
near DRAM1. The arrows indicate when the server starts to
run a job for 25min. When the server runs, it will gradually
heat up DRAM2. Subsequently, the fan starts working, and
ambient temperature drops (especially for DRAM1 and the
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(a)

(b)

(c)

Fig. 9. (a), (b) Results of measuring the temperature every 5min with DRAM
module in two different rooms for 24 hours. (c) Results of measuring the
temperature every 5 minutes with DRAM modules in a server rack. The arrows
show when the server starts to run a job.

thermocouple). Consequently, using only the IoT device’s
DRAM, the attacker can monitor the temperature change of
the server, which could create a side-channel to reveal the
activity of the tenants [12].

C. Evaluating Attacks to Spying on Absolute Temperatures

This section evaluates the attacks spying on absolute
temperature values solely using the number of bit-flips.
Additionally, the corresponding temperature approximation
function is evaluated.

1) Evaluating the temperature to bit-flips approximation
function: Multiple measurements captured covering the
temperature range of interest are used to estimate the
constants c1 and c2 of our mathematical model, described
by Equation (2). For this purpose, we use the enrollment
measurements described in Section IV-C2. To get a
more precise approximation, the constants c1 and c2 are
calculated separately for the temperature regions from
0 °C to 25 °C, from 25 °C to 45 °C, as well as from
45 °C to 70 °C. Additionally, we use measurements with
t =240 s for the approximation, as this decay period yields
a substantial number of bit-flips on all temperature regions.
In Figure 10 (e), the real temperature is shown compared to
the approximation function. There, the temperature region
is subdivided into the three aforementioned intervals, and
the approximation is calculated for each interval. For higher
temperature values, the function Tapx approximates the
temperature very precisely. The approximation of values close
to zero is more imprecise due to the lower number of bit-flips.

2) Enrollment: To evaluate attacks based on the absolute
amount of bit-flips, additional measurements at Tnew =
{0, 2.5, ..., 70}°C are taken, to examine especially lower and
higher temperatures. Here, we notice that a larger step size of
dTnew = 2.5 °C is sufficient to approximate the temperatures
between the 2.5 °C steps. For this attack, ten measurements
are captured per temperature and decay time, and the av-
erage number of bit-flips of these measurements is used to
approximate the temperature. This simple method can spy
on absolute temperatures and can additionally detect small
temperature changes with comparable precision to the method
described in Section IV-B1. We evaluated further decay times
of t = 60 s, t = 120 s, t = 180 s and t = 240 s, and a memory
region size of 1MB. There, the total amount of bit-flips is
measured per temperature and decay time, resulting in multiple
measurements:

Exp240s := {bf0 °C
enr , bf

2.5 °C
enr , ..., bf70 °C

enr }.

A visualization of these measurements is shown in
Figure 10 (a) to (d).

3) Attack evaluation: As for the attacks based on rel-
ative temperature changes, we also consider two different
attack scenarios using the approximation function described
in Section III-C1. The first scenario concerns spying on the
temperature next to a server to gather information about its
workload. The second scenario spies the temperature within
a room, e.g., in the context of a smart home, to find out if
somebody is present in the room.

These attacks are implemented using two Galileo boards.
The first device does not need to be physically in the area
being spied on. Enrollment measurements on this device are
taken over the whole temperature range. These measurements
are then used to approximate the dependency of the number
of bit-flips on the temperature using Equation (2), as already
explained in Section IV-C2. To implement the attacks, the
approximation calculated by the measurements of the first
device is used, as well as a single enrollment measurement of
the second Galileo board. This allows an attacker to execute
temperature spying attacks on a board without capturing
enrollment measurements over the whole temperature range
using the spying board itself.

In the proof-of-concept implementations of both attack
scenarios, the spying Intel Galileo board is connected to a
local area network via an Ethernet cable. A second malicious
device, in our case a Raspberry Pi, is located in a different
room, but is connected to the same network. On the Galileo
board, malicious software is installed, which continuously
executes a DRAM decay measurement during runtime on a
256KiB ( = 32KiB) memory region. Before the execution of
the measurement, a 256KiB memory area of the Galileo board
is filled with ones. Afterwards, the memory refresh is disabled,
and for each 120 s, the number of bit-flips is collected and
sent to the Raspberry Pi. After each measurement, a new 120 s
DRAM decay measurement is executed. In the beginning, only
one enrollment measurement is done at 40 °C. Subsequently,
the factor p is calculated according to Equation (3). p is
stored on the Raspberry Pi and used for each temperature
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Fig. 10. (a) to (d) show the dependency between the temperature and the number of bit-flips of the four decay times 60 s, 120 s, 180 s and 240 s. Each curve
shows the average amount of bit-flips of a specific device over ten measurements on the same device. (e) shows the approximation of the temperature given
the average bit-flips per temperature of four Galileo boards, based on a decay time of 240 s.

approximation using Equation (2). This allows the Raspberry
Pi to calculate the temperature in the vicinity of the Galileo
board every 128 s when also considering the time to initialize
and to read from the memory.

For both scenarios, the ambient temperature was regulated
by a Weisstechnik LabEvent climate chamber, which was also
controlled by a Raspberry Pi. To test the robustness of the
temperature prediction, faster and slower temperature changes
were tried. It was also tested how the temperature prediction
works on minor temperature variations. The temperature curve
that was obtained, can be seen in Figure 11 (a). Here, the
approximation using the Galileo board almost follows the real
temperature curve. We can see that this approach has a small
delay, probably caused by the time needed for the DRAM
modules to be affected by the ambient temperature changes.
In Figure 11 (b), the deviation from the real temperature can
be seen. Here, the deviation is below 1 °C most of the time.
Only rapid temperature changes cause greater deviations.

Afterwards, the same attacks are evaluated on the device
previously used for enrollment over the whole temperature
range. As expected, a better approximation of the temperature
based on the current DRAM bit-flips of this board can be
achieved, in comparison to the execution on the other device,
for which an enrollment over the whole temperature range has
not been performed. As shown in Figure 12, the deviation of
the approximated and the real temperature is almost always
below 0.5 °C.

D. Attack Complexity

The attacker’s efforts consist of making enrollment mea-
surements and conducting each temperature readout during the

actual attack. For both, the attacker needs to be able to run
malicious kernel code on the victim platform to control the
DRAM refresh.

The enrollment time consists of the measurement time, the
data transfer time, and the time to identify indicator cells. The
measurement time is the decay time plus the time to initialize
(write) and read from the DRAM region. For a 2MiB memory
region, on an Intel Galileo, it takes about half a minute to
read or write the region. Thus, one enrollment takes about
two minutes, considering a decay time of t = 60 s: half a
minute to initialize, one minute to allow decay to happen, and
half a minute to read the DRAM region to locate the decayed
bits is required. By using smaller memory regions of 256KiB
for the attacks described in Section IV-C3, the additional delay
caused by the initialization and the read operations is only 8 s.

The total number of measurements depends on the tempera-
ture range and the required temperature resolution. To acquire
ten enrollment measurements, assuming an average enrollment
decay time of t = 60 s, it takes less than half an hour. The data
transfer time depends on the size of the data to transfer, and
the network speed achieved each time. The time to compare
the enrollment measurement and identify the indicator cells
is negligible.

The temperature readout time consists of a single measure-
ment. Furthermore, because only the indicator cells need to be
measured, the time to initialize and read the result is negligible
compared to the decay time.

It is important to note that the continuous refresh operation
of the kernel memory causes a significant CPU load. This
effect has been previously analyzed in a work by Xiong et
al. [14]. The authors observed that the refresh operation of
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Fig. 11. This figure shows a spying attack on the temperature nearby a server
system, simulated by a climate chamber. (a) shows a comparison of the real
and the approximated temperature on a Galileo board for which only one
enrollment measurement has been taken, and Equation (2) is used. (b) shows
the deviation from the real temperature, which is below 1◦C most of the time.
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Fig. 12. Simulation of a temperature spying attack in the vicinity of a server.
In this case, the approximation is based on the device for which an enrollment
over the whole temperature range has been performed. As expected, an
approximation of the temperature with higher precision is achieved.

a 128MB memory segment, holding the kernel’s memory of
the Galileo Boards, results in 33% CPU load, when executing
a refresh operation every 64ms. However, it should be noted
that this refresh rate is highly conservative and longer refresh
intervals can be chosen without risking bit-flips in the kernel’s
memory. Consequently, a refresh rate of 200ms produces only
10% additional CPU load. Moreover, the control over the
memory region can be returned to the kernel in the absence of
an attack. Furthermore, the previously disabled DRAM refresh
operation of the memory controller can be reactivated when
no attack is executed. By increasing the interval of the refresh
operation and by activating the memory controller’s DRAM
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Fig. 13. (a) comparison of the number of bit-flips when measuring the boards
within a cover box and without it at temperatures from 20 °C to 60 °C.
Here, the cover causes a higher amount of bit-flips in comparison to the
measurement without the cover. (b) Execution of 25 measurements with and
without the cover at a constant temperature of 40 °C. The cover causes a
much higher amount of bit-flips, compared to the bit-flips caused without it.

refresh when no attack is executed, the likelihood of our attack
being detected can be reduced. This method reaches its limits
with larger memory regions of multiple gigabytes, resulting in
significant CPU loads.

V. COUNTERMEASURES

This section outlines different countermeasures, mitigating
the impact of temperature-spying attacks. Specifically, we
differentiate between passive attack detection and active attack
prevention.

A. Attack Detection

There are various methods to detect DRAM-spying attacks.
1) Monitoring the CPU time: One approach relies on the

fact that the DRAM refresh can only be disabled for an entire
DRAM module. In order to maintain the data integrity of
memory regions like those used by the operating system’s
kernel, a periodic refresh operation is mandatory, typically
every 64ms. In case the refresh is not performed by the
memory controller, the CPU needs to initiate read access
to memory regions not reserved for our temperature-spying
attack. This causes an increased, and therefore detectable CPU
load.

2) Detection based on memory accesses: Another detection
method involves monitoring the repeated pattern that is written
regularly to certain memory regions. This could be detected,
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for example, by a process monitoring different memory re-
gions.

3) Monitoring the network traffic: In a third detection
method, the network traffic can be observed to detect sus-
picious data frames containing the number of bit-flips, sent to
an attacker regularly.

All these detection measures enable active countermeasures,
such as restricting the network traffic, disallowing the access to
specific memory regions, detection and disabling of processes
with high CPU load, to prevent or mitigate the impact of such
attacks.

B. Attack Prevention

In contrast to the attack-detection, attack-prevention mea-
sures try to proactively prevent the system from such attacks
beforehand.

1) Protection of the Kernel and the Firmware Code: One
way to mitigate the said temperature spying is to prevent dis-
abling the DRAM refresh, as the attacker needs to disable the
DRAM refresh to measure the DRAM decay. Since disabling
the DRAM refresh can only be achieved in the kernel of the
operating system and/or the relevant firmware, on almost all
platforms, the attacker has to inject untrusted code into the
kernel or firmware. Thus, one simple countermeasure is to
protect the kernel and firmware code.

However, forcing the DRAM refresh to be always on is not
desired from an energy-saving perspective. To this end, a deep
sleep mode usually exists, where the DRAM refresh is off.
Therefore, an attacker can write initial values into the DRAM
region and force the DRAM into that sleep mode, such that
the memory decays. To prevent this attack, the system needs
to always zero out the whole memory immediately when the
memory returns from the sleep mode.

In general, although the implementation of this countermea-
sure would seem possible, it would also cause a certain level
of inconvenience and also potentially require the addition of
extra resources to the system.

2) Impact of Using a Cover: We also examined the effect
of placing the Galileo boards/DRAMs inside a closed box
made of PLA (Polylactide). As illustrated in Figure 13 (a),
more bit-flips occur when the Galileo board is inside the box
in comparison to conducting the same experiment without
a cover. The observed difference in the number of bit-flips
with and without the cover even increases with rising tem-
perature. For comparison, also the behavior when executing
the experiment with constant temperature was examined. In
Figure 13 (b), the number of bit-flips with and without the
cover is given in 25 measurements at a constant temperature
of 40 °C. Again, the box causes a much higher amount of bit-
flips compared to the execution without the cover. Because
the cover does not only add a constant offset to the number
of bit-flips but also distorts the slope of the function, this
mechanism can be used to mitigate temperature spying attacks.
We expect that the higher amount of bit-flips may be caused
by the heat produced by the Galileo boards and the missing air
circulation. The missing air circulation can cause the risk of
overheating, which is especially critical for actively cooled

devices requiring fresh air floating to a fan. For passively
cooled devices like our Galileo boards, experimenting with
different materials, like aluminum could probably increase
the cooling capabilities of the device. Different materials,
or varying production parameters, like the thickness of the
material, could aggravate the attack even more. Overall, we
note that a simple box is sufficient to effectively distort our
attacks.

VI. CONCLUSIONS AND FURTHER WORK

This work demonstrated that commercial, off-the-shelf
DRAM modules can be abused to act as remote temperature-
spying sensors in ordinary IoT devices. We showed that
attackers only need to modify the software of a device and
take enrollment measurements at a constant temperature. Sub-
sequently, they can monitor the ambient temperature over a
large temperature interval by measuring the DRAM decay
while the DRAM refresh operation is disabled. We proved
in experiments that this approach can achieve a very high
temperature resolution of 0.5 °C in practice.

Moreover, we analyzed various papers exploiting the
DRAM retention effect to measure temperatures across various
device types, such as small boards like Raspberry Pis, or
FPGAs using DDR4 memory. This indicates that temperature-
spying attacks based on DRAM retention, as presented in
this paper, can be generalized to different types of devices,
given that the decay behavior of these memory modules is
understood.

In addition, this work for the first time suggested and
tested different detection and prevention methods. The most
obvious of these consists of enforcing the DRAM refresh
to be turned on permanently. However, this is not desirable
from an energy consumption perspective. Another measure
is shielding the device against the environment by using a
box or a similar encapsulation mechanism. While this can be
laborious in practice, it does work effectively, as demonstrated
by experiments in this paper. Future research will have to
investigate in detail whether there could be other, perhaps yet
more effective, countermeasures at the circuit or architectural
level. The employed attack and analysis code is available under
the GPLv3 license at http://caslab.csl.yale.edu/code/tempspy/.

Although the DRAM-spying attack has been intensively
evaluated, two different attacks have been demonstrated, and
several countermeasures were presented, there are still areas
requiring further investigation. Despite the ambient tempera-
ture, there are further environmental conditions that potentially
influence our attack and are not considered in this paper. Es-
pecially the effect of aging of DRAM memory modules could
potentially influence our attack implementation. Although the
observation by Bepary et al. [50] observe that these aging
effects do not significantly influence the DRAM retention
effect, it may be necessary to perform further enrollments
after a certain period of time to ensure the same temperature
precision as previously achieved. Another possibility requiring
further investigation is to consider the aging effects in our
mathematical approximation functions, which we leave for
future work.

http://caslab.csl.yale.edu/code/tempspy/


IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023 13

Our attack once more reminds us that the espionage poten-
tial and indirect sensor capacities of electronic IoT devices are
currently not well-understood. Seemingly simple components
with limited functionalities often can be abused in unforeseen
manners; this applies to the recent gyroscope attacks [5] as
well as to our novel espionage usage of DRAM cells. In
addition, the interplay of several ostensibly trivial system
components can often create unforeseen emergent behavior
exploitable by attackers. This calls for new, perhaps yet
more fundamental research to better protect our security and
privacy in relevant environments like the IoT. The first steps
towards applying highly developed cryptographic tools like
the universal composition framework to complex hardware
settings have been made only recently [51].
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[23] L. Orosa, U. Rührmair, A. G. Yaglikci, H. Luo, A. Olgun, P. Jattke,
M. Patel, J. Kim, K. Razavi, and O. Mutlu, “Spyhammer: Using rowham-
mer to remotely spy on temperature,” arXiv preprint arXiv:2210.04084,
2022.

[24] N. A. Anagnostopoulos, T. Arul, Y. Fan, C. Hatzfeld, J. Lotichius,
R. Sharma, F. Fernandes, F. Tehranipoor, and S. Katzenbeisser, “Secur-
ing IoT devices using robust DRAM PUFs,” in 2018 Global Information
Infrastructure and Networking Symposium (GIIS). IEEE, 2018, pp. 1–5.

[25] A. Schaller, W. Xiong, N. A. Anagnostopoulos, M. U. Saleem, S. Gab-
meyer, B. Skoric, S. Katzenbeisser, and J. Szefer, “Decay-based DRAM
PUFs in commodity devices,” IEEE Transactions on Dependable and
Secure Computing, vol. 16, no. 3, pp. 462–475, 2019.
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